
Population-weighted efficiency in transportation networks
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Transportation efficiency is critical for the operation of cities and is attracting great attention worldwide. Improving the transportation efficiency can not only decrease energy
consumption, reduce carbon emissions, but also accelerate people’s interactions, which will become more and more important for sustainable urban living. Generally, traffic conditions in
less-developed countries are not so good due to the undeveloped economy and road networks, while this issue is rarely studied before, because traditional survey data in these areas are
scarce. Nowadays, with the development of ubiquitous mobile phone data, we can explore the transportation efficiency in a new way. In this paper, based on users’ call detailed records
(CDRs), we propose an indicator named population-weighted efficiency (PWE) to quantitatively measure the efficiency of the transportation networks. PWE can provide insights into
transportation infrastructure development, according to which we identify dozens of inefficient routes at both the intra- and inter-city levels, which are verified by several ongoing
construction projects in Senegal. In addition, we compare PWE with excess commuting indices and the fitting result of PWE is better than excess commuting index, which also proves the
validity of our method. SIMILAR CONTENT BEING VIEWED BY OTHERS IMPACT OF BUILT ENVIRONMENT ON COMMUTING CARBON EMISSIONS USING BIG DATA: A CASE STUDY OF JINAN’S MAIN URBAN AREA Article Open
access 15 May 2025 EXPLORING THE INTERPLAY BETWEEN POPULATION PROFILE AND OPTIMAL ROUTES IN U.S. CITIES Article Open access 08 May 2025 A UNIFIED DATASET FOR THE CITY-SCALE TRAFFIC
ASSIGNMENT MODEL IN 20 U.S. CITIES Article Open access 29 March 2024 INTRODUCTION Almost all of the dynamical processes we concern within cities, such as human mobility1,2,3,4, epidemic
spreading5,6,7,8 and socio-economic activities, are driven by population interactions and based on transportation networks. In a broad sense, almost all urban flows (e.g. population,
products, energy, information) are carried by “transportation networks”. After realizing the importance, most cities are stretching their transportation networks to promote urban
development, but it is too costly to build new routes to reach every part of a city. Thus, analyzing and improving the efficiency of transportation networks are of great importance, since
the efficiency improvement can not only decrease energy consumption and CO2 emissions9, but also accelerate urban flows, which are critical for the sustainability and effective operation of
cities10. Previous researches on transportation efficiency mainly focus on three separate ways: one is about the topology of networks, which is devoted to a general network efficiency, which
can be applied to information exchange and transportation by treating the inverse of distance between node pairs as local measure of efficiency between them11. Another is about the
geometric properties of spatial networks12,13 and develops an indicator named _route factor_ (denote as ) to measure the network efficiency by calculating the mean ratio of the distance
along edges (_l__i_0) and Euclidean straight line (_d__i_0)14,15. The other one concentrates on the job-housing balance16 or excess commuting [i.e., the difference between the average actual
commuting time (or distance) and the theoretical minimum average commuting time (or distance)]17,18. The first two do not consider the real population distribution, while the third one
suffers from the use of statistically improbable variable (minimum average commuting distance) as a benchmark18 and is limited in finding local inefficient routes. Some recent work uses
hypergraphs to study transferability of collective transportation line network and begins to concern with passenger system level19. In addition, these methods need either road network data
(e.g. ordnance survey) or transportation survey data, which are costly and time consuming and might not be available in less-developed countries. The data scarcity problem adds up many
difficulties to the empirical analysis of transportation efficiency in these areas, where the traffic conditions are usually not so good due to the undeveloped economy and infrastructure.
Today, we leave tremendous “digital footprints” (geo-located data collected by electronic equipment) in cities due to the increasing penetration rate of mobile phones20, social media21,
transportation cards22 and credit cards23, among others. These “digital footprints” give us a dynamical perspective of the ongoing phenomena in cities24,25 and provide us new data source to
explore the transportation efficiency. Among these data, call detailed records (CDRs) of mobile phone users are considered to be of the highest quality to estimate the population/traffic
dynamics due to the high penetration rate and lower usage bias than social media data. In this paper, based on mobile phone CDRs and other open accessed data, we overcome the above-mentioned
shortcomings and develop a new indicator called population-weighted efficiency (PWE) to quantitatively measure the road network performance. The population weight factor is based on
home-work matrices, which will be our Origin-Destination (OD) matrices, extracted from CDRs and the road network data are based on Google Map Application Programming Interface (API). The
contributions of our work are as follows: First, the real population distribution is imported as the weight to the _route factor_. Cities with the same road network structure (_route
factor_) but different population distribution may have different efficiencies, they can be captured by our method rather than the traditional way. Second, mobile phone data and Google Maps
are used as proxy variables for population and road networks separately, they are quite useful for empirical research in African cities26,27,28,29, where the urbanization is fast but the
population census are costly and not timely updated and road network data of the OpenStreetMap (OSM)30 are sparse. Third, our method can be applied to detect inefficient routes and provide
suggestions for infrastructure development and improvement. For example, route pairs with a high volume of commuters and abnormal low PWE would be considered as in need of improvement or
reconstruction. As a case study, for Dakar, we identify the most inefficient route pairs at both intra- and inter-city levels and our results are partially verified by several ongoing
construction projects (e.g., the Dakar-Diamniadio highway31,32). In addition, we study ten main cities in Senegal and compare their PWEs with the most commonly used excess commuting index
and find that there is a significantly correlation between PWE and the average commuting time and the fitting result of PWE is better than excess commuting index, which further proves the
validity of our method. RESULTS DATA DESCRIPTION Our analysis is based on anonymous mobile phone datasets of CDRs and text exchanges at antenna resolution between more than 9 million users
of the Orange/Sonatel Group in Senegal from January 1, 2013, to December 31, 201333. The data are preprocessed33 and provided by D4D Challenge organizers and are systematized into
sub-datasets: dataset 1 includes the hourly voice and text exchange between mobile phone towers and dataset 2 includes fine-grained anonymized individual mobility data at the antenna level
of approximately 300,000 randomly sampled users for each fortnight. See ref. 33 for a full detailed description of the dataset and more related works based on D4D data can be found in ref.
34. We focus on ten main cities of Senegal, especially Dakar, which is the capital and the largest city in Senegal. The locations of the mobile phone towers and studied cities are displayed
in Fig. 1a and the averaged call density of Dakar is shown in Fig. 1b. According to the CDRs, we find that: i) on average, in each fortnight, there are more than 170,000 users within the
region of Dakar, which accounts for almost 60% of the total sampled users (300,000); ii) Plateau and Médina are two of the most active regions during the daytime, which is also in agreement
with the situation observed in reality. Instead of using the administration city boundary, we define the city boundary by the following criteria: i) divide the whole country into sub-regions
by Voronoi tessellation, which are calculated according to the geographical coordinates of the antennas (see Fig. 1a); ii) calculate the population density of each cell based on WorldPop
data35 and select all cells with a population density over 100 people/km2; and iii) combine the data with Google earth remote sensing data to filter out cells of non-built-up areas
(artificial recognition). The first four columns of Table 1 show the names, population and population density of the studied cities. POPULATION-WEIGHTED EFFICIENCY (PWE) If two places are
geometrically close (with a small geometric distance, assigned as _d__e_), but the route distance (_d__r_) between them is large (Fig. 2a shows the difference between the geometric distance
and route distance), then we can assume that this route’s structural efficiency _d__e_/_d__r_ is low and requires improvement. Here, the definition of structural efficiency is similar to the
_route factor_ proposed in refs 14,15. After repeating the process of calculating _d__e_/_d__r_ for every route and average the results, we can get the efficiency of the whole road
networks. This way weights each route equally, but in practice, the traffic volumes of routes are expected to be very different from one another, due to the uneven distribution of
population. Therefore, if we weight the route factor by the proportion of population flows along each route, we can then obtain a more practical indicator, the population-weighted efficiency
(PWE) for road networks, defined as: where _P_(_i_,_j_) stands for the number of persons commuting from place _i_ to _j_ and is the total size of the population flows, _d__r_(_i_,_j_) is
the route distance between _i_ and _j_ and _d__e_(_i_,_j_) is the geometric distance. It is easy to calculate _d__e_(_i_,_j_) between any two locations according to their (longitude,
latitude)s and _d__r_(_i_,_j_) could be acquired from Google Map API (see the Methods and Fig. 2b). By integrating the PWEs of each route pair, we can obtain the overall PWE of a city: Based
on our definition, η = 1 is the most efficient situation (there’s a direct route between any commuting pairs); the smaller η is, the less efficient it is. USERS’ BEHAVIORAL PATTERNS AND OD
DETECTION To understand the PWE of a city, the first step is to identify the dynamic population distribution, _P__i_,_j_, i.e., (at least) where people live and work, which is also called OD
matrices and usually collected by field transportation survey. While for many developing or less-developed countries, the transportation survey is not available. Even for developed
countries, the survey is usually conducted by the government once a year (or longer) for transportation planning purposes. Here, we use mobile phone call data to estimate the OD matrices,
which has been widely accepted in academia36,37. However, unlike previous related works on OD analysis, which assume working hours according to practical experience28,36, we detect OD
matrices by analyzing users’ behavioral patterns. For a closer look at the temporal patterns of the mobile phone calls, we find some common features of the calling patterns compared with
cities in developed countries: there are two peaks in phone call activities, one at noon (about 12:00) and another at night (about 21:00–22:00, see Fig. 3a,b) and the second peak in Senegal
is a little later than in most Spanish cities25. An attractive finding is that the average call duration during the day is about 60 seconds (Fig. 3c), which may be influenced by the charging
mode or may be merely a reflection of the daytime work character, which is short, frequent and brief. Additionally, people in Senegal are quite active during nights: the call duration is
long (see Fig. 3a) and the number of short messages is very high at night (especially late night, see Fig. 3d). Based on these user behavioral patterns, we identify that the actual working
hours are from 10:00 to 19:00. It is because the existence of a rapid increase in average call duration before and after this period, which corresponds to different active patterns. In Fig.
3d, we observe a striking peak in short messaging service (SMS) behavior at approximately 23:00, when the total call duration also peaks (see Fig. 3a,d), which implies another important
behavior feature that usually occurs during leisure time (i.e., at home). Therefore, we set the home hours as 21:00 to 06:00 of the next day. For a user, we identify the most frequently
visited location (tower) over the two periods mentioned above as his or her work/home places, respectively (see the Methods). Therefore, we can extract an OD pair as the home to work place
of each user at antenna resolution. By going through all of the users’ records, we obtain the OD matrices at both the intra- (see Fig. 4a,b and Supplementary Fig. S1, at antenna resolution)
and inter-city levels (see Fig. 5b, at city levels, i.e., treat all the antennas within one city as a node). Figure 4 shows the OD matrices in Dakar (Fig. 4a) and Thies (Fig. 4b): it implies
that a lot of people commute from west to east in Dakar, whereas the commuting pattern in Thies is from the center to the suburbs. It should be noted that these plots only show the
geometric links between two places, rather than the real routes. PWE AND ITS APPLICATIONS After obtaining the OD matrices, we can query each OD pair’s locations to Google Map API, which can
return the route distance and travel time between two locations. Figure 4c shows the scatter plots of route distance and geometric distance of Dakar and Fig. 4d exhibits Thies. The left-top
points of Fig. 4c,d indicate routes with high route distances and low geometric distances, which implies that paths between these points are zigzags or complicated and of inefficiencies. The
PWE of each road can be obtained by plugging the OD matrices and the ratio of the real route distance and the geometric distance into Eq. (1). As an improved indicator for road networks
efficiency, PWE has essentially three applications: i) detect inefficient routes within cities and ii) at inter-city level; iii) calculate overall commuting efficiency of each city. In the
following, we will show the viability and effectiveness of the PWE. First, as a case study in Dakar, according to the PWE of each road, we identify dozens of the most critical inefficient
routes (see Fig. 5a and Supplementary Table S1 gives the values of top ten inefficient routes). An attractive finding is that almost all of these critical inefficient routes are south-north
trending and can be divided into three groups (colored in red, blue and green separately in Fig. 5a). The existence of the red group in the east region may be mainly caused by the separation
of the west-east trending highway, people are forced to detour the way from home to work. The blue group in the west region is mainly caused by the high weight of commuting volume,
_P_(_i_,_j_)/_P__tot_ and the detour. And the green group is another representative type that crosses an enclosed space (the airport in Dakar). The pattern of detected inefficient routes
implies the necessity of constructing some fast transits between the north and south regions. Second, PWE can be applied to inter-city level by considering the entire antennas within a city
to be a node. Figure 5b shows the commuting flows between the ten main cities. We find that many people commute between Dakar and its surrounding cities, especially Thies, Mbour and Touba,
which indicates that the agglomeration degree of the urban population is very high in Senegal and that most of its population live near the Dakar region. With a similar calculation for PWE
within the city, we can obtain the PWEs for city pairs. We find that there are several routes connecting Dakar, Thies and Mbour that are of the lowest PWEs, which indicates that we may need
to build better roads between these city pairs. Our results are also partially verified by the ongoing construction of the Dakar-Diamniadio highway, which makes transit faster between Dakar,
Thies and Mbour31,32 (see inset of Fig. 5b). Third, we compute the overall PWE for all ten main Senegalese cities (see the fourth column of Table 1), from which we find that Dakar is the
most inefficient city with η = 0.683, whereas most city PWEs are about 0.73–0.78. The low efficiency of Dakar is mainly due to the lack of fast south-north trending transits and the high
work-home separation, which could also be inferred from CDRs (see the Methods). In Dakar, We find that most of the users are distributed in Dakar Plateau, Grand Dakar, Médina and Parcelles
Assainies during the daytime (Fig. 6a) and Parcelles Assainies at night (Fig. 6b). Figure 6c depicts the work-home user differences in Dakar. For each department, we obtain a day/night
population ratio, which evaluates the work-home separation situation (see Fig. 6d). We compare the separation degree of each _Region_ and find that Dakar and Kaolack are the two _Regions_
that have the highest separation degree (see Supplementary Table S2 for the calculation of the separation degree). COMPARISON BETWEEN PWE AND EXCESS COMMUTING INDEX There are many indicators
could be used to measure commuting efficiency and job-housing balance in transportation literature18. In this section, we want to compare the most commonly used one, excess commuting, with
PWE. First proposed by Hamilton38, the concept of excess commuting is used to measure the difference between the actual commuting distance (or time) and the theoretical minimum average
commuting distance (or time). Mathematically, the equation of excess commuting could be expressed as follows: where _C__act_ is the actual commuting distance, which is similar to _d__e_ at
individual level if measured by geometric distance, or _d__r_ by route distance (see Supplementary Fig. S2). _C__min_ is the minimum commuting distance when all working and living places are
fixed in urban area, workers in a city choose work places that is closest to their living places. In other words, the assumptions of this transportation problem are: 1) the volume of
origins, destinations of each area and the total flows between them are fixed; 2) individuals choose living and working places to minimize the total travel distance. The most optimal
commuting flows could be derived by optimizing: where _c__if_ is the distance (or time) between area _i_ and area _j_, _O__i_ is the total number of people living in area _i_ and _D__j_ is
the total number of people working in area _j. n__ij_ is the commuting flow from area _i_ to _j_. The minimum commuting flows (_n__ij_) are calculated using _Scipy_._optimize_ package in
_Python_ and the average minimum commuting distance (_C__min_) is shown in the fifth column of Table 1. Since _C__act_ varies for different definitions, here we calculate both geometric
distance and route distance and depict them in the sixth and seventh columns of Table 1 respectively. Obviously, _C__act_1 (geometric distance) is smaller than _C__act_2 (route distance).
Combining with Eq. 3, we could get excess commuting indices, _C__ex_1 and _C__ex_2 (see Table 1). To compare PWE and excess commuting, a third benchmark is needed. Here, we choose average
commuting time, which is a direct reflection of the transportation efficiency. We calculate the average commuting time in each city (see the Methods) and find that both PWE and excess
commuting indices highly correlate with average commuting time (by OLS regression), which indicates both of them could be used to measure the efficiency of a city, however, PWE is better
because its correlation coefficient is much higher (_R_2 = 0.87, see Fig. 5c) than the ones of _C__ex_1 (_R_2 = 0.24) or _C__ex_2 (_R_2 = 0.42). Excess commuting can offer valuable insights
in evaluating job-housing balance and the overall efficiency of a city. However, the minimized commuting flows are obtained by the global optimum solution, making excess commuting index
unable to find local inefficient routes, which could be improved by our PWE method. A NULL MODEL To explain why most ηs lie in (0.73, 0.78) (see Table 1), we build a null model to compare
the simulation with empirical results. Let us assume a monocentric city, where all the people work at the center of the city and live uniformly around the city space. The road network of the
city is in the form of a lattice (e.g. Manhattan grids, see Fig. 2a); therefore, the route distance from the location (_x_, _y_) to the city center (0, 0) is |_x_| + |_y_| and the geometric
distance is (_x_2 + _y_2)1/2. Under these assumptions, we could easily get η = 0.77 by simulation (see the Methods). Because the population distribution is not uniform within the city in
reality, we also test for normal and exponential population density decay from the city center, which are observed in many cities39. The PWEs of the normal and exponential distributions are
0.79 and 0.80, which implies the concentration at the city center leads to higher efficiency. The empirical results for monocentric cities in Senegal are well fitted by simulation except for
Dakar. In fact, the urban form of Dakar is irregular narrow strip and cannot be treated as a monocentric city. From both the model and empirical results, we could find that PWE is mainly
influenced by the road network structure and the population distribution. The more direct routes between OD pairs of high traffic volumes, the higher efficiency the road network is.
Similarly, increasing the ratio of jobs-housing balance may reduce overall commuting distance and improve the transportation efficiency. DISCUSSION In this paper, basing on CDRs, we
introduce a new indicator, the population-weighted efficiency, which tells us how efficient the city is and provides a quantitative measurement to guide transportation infrastructure
development. This indicator is helpful for evaluation of urban planning and designing and could be applied to other spatial networks easily. Besides, our method to obtain the OD matrices is
more objective which is based on users’ behavior patterns rather than practical sense. We prove that the PWE is a proper indicator for evaluating the efficiency in two ways. First, according
to the PWE, we identify the most inefficient roads both within Dakar and between cities, which are partially verified by ongoing constructed roads. Second, we compare PWE with excess
commuting, the most commonly used commuting efficiency index in transportation literature and find that PWE is highly correlated with the average commuting time and has a better fitting
result than excess commuting. After comparing the PWE indicator of all ten main cities in Senegal, We discover that Dakar is the most inefficient city, which is mainly due to the lack of
fast south-north trending transit and the high degree of work-home separation. Another finding is that most Senegalese cities’ average PWE value are approximately 0.73–0.78 and we believe
that this is a reflection of the monocentric feature and Manhattan road networks (i.e., lattice networks), which can be explained by the simple model that we propose. In fact, the efficiency
and extendibility of a city is strongly influenced by its terrain, current road network and population distribution and suitable planning strategies are required for special terrain. For
example, Dakar may need to build cross-sea transportation, but another possibility may lead to the redistribution of land use for the historical heart of the city. In addition, different
types of people may tend to have quite different mobility patterns. The mobility dynamics for local and non-local users may not be similar (see Supplementary Fig. 4) as well as for people
with different income24,40. For future studies, it will be critical to distinguish between different dynamics for different types of users41, which could be helpful when performing
simulations for policy impact evaluations or urban planning and real-estate development. One more possible exploration is assessing the infrastructure development within a region by
comparing the infrastructure density (e.g., road density) and population density within the same region (see Supplementary Fig. 4). METHODS OD DETECTION By integrating the CDR data records,
we obtain a list of places a user visited with information of both when and how many times these visits occurred. Then, we count the locations at which the user appears at both night and day
and consider the places that appear with the highest frequencies to be the home and workplace. When we fail to detect the work or home location, we assign it as UNKNOWN. If a user’s home is
unknown but work is known (or vice verse), we still accumulate the data point as the daytime population and draw it out together in Fig. 6. We obtain an extended OD matrix with an extra row
and column for users without a detected home or work place, respectively. There’s no user with both unknown home and work place, but the non-local users in Dakar are easily absent of a home
location (see discussion in Supplementary Fig. 3), which also happens in developed countries37. ROAD NETWORK DATA AND EFFICIENCY The Google Map API (http://maps.googleapis.com/maps/api/)
can return the travel time (by car, in seconds) and route distance between two locations and the geometric distance between these two locations can be easily calculated according to their
(longitude, latitude)s. In addition, the Google API can return real-time data on travel time in big cities, which could be used to compute the average commuting time in cities. SIMULATION
FOR THE NULL MODEL The simulation is performed as follows. We split the entire _L_ × _L_ space into _L_2 lattices, which represent Manhattan road networks. We uniformly generate 100,000
points, which are located at the intersections of the road network. Therefore, we calculate the geometric distance (_x_2 + _y_2)1/2 and route distance (|_x_| + |_y_|) to the center of the
_L_ × _L_ space, where the central lattice represents the working place. The PWEs of the uniform, normal and exponential distributions are 0.77(0.001), 0.79(0.001) and 0.80(0.001),
respectively. Each simulation was performed 10 times under the _R Environment_. ADDITIONAL INFORMATION HOW TO CITE THIS ARTICLE: Dong, L. _et al._ Population-weighted efficiency in
transportation networks. _Sci. Rep._ 6, 26377; doi: 10.1038/srep26377 (2016). REFERENCES * González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding individual human mobility
patterns. Nature 453, 779–782 (2008). Article ADS Google Scholar * Song, C., Qu, Z., Blumm, N. & Barabási, A.-L. Limits of predictability in human mobility. Science 327, 1018–1021
(2010). Article CAS ADS MathSciNet Google Scholar * Yan, X.-Y., Han, X.-P., Wang, B.-H. & Zhou, T. Diversity of individual mobility patterns and emergence of aggregated scaling
laws. Sci. Rep. 3 (2013). * Yan, X.-Y., Zhao, C., Fan, Y., Di, Z. & Wang, W.-X. Universal predictability of mobility patterns in cities. J. Roy. Soc. Interface 11, 20140834 (2014). *
Wesolowski, A. et al. Quantifying the impact of human mobility on malaria. Science 338, 267–270 (2012). Article CAS ADS Google Scholar * Wesolowski, A. et al. Impact of human mobility on
the emergence of dengue epidemics in pakistan. Proc. Natl Acad. Sci. USA 112, 11887–11892 (2015). Article CAS ADS Google Scholar * Brockmann, D., David, V. & Gallardo, A. M. Human
mobility and spatial disease dynamics. Reviews of Nonlinear Dynamics and Complexity 2, 1–24 (2009). MathSciNet MATH Google Scholar * Li, R., Wang, W. & Di, Z. Effects of human
dynamics on the epidemic spreading in côte d’ivoire. arXiv preprint arXiv:1605.00899 (2016). * Yin, X. et al. China’s transportation energy consumption and CO2 emissions from a global
perspective. Energ. Policy 82, 233–248 (2015). Article CAS Google Scholar * Banister, D. Unsustainable transport: city transport in the new century (Taylor & Francis, 2005). * Latora,
V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001). Article CAS ADS Google Scholar * Barthélemy, M. Spatial networks. Phys. Rep. 499,
1–101 (2011). Article ADS MathSciNet Google Scholar * Louf, R., Jensen, P. & Barthélemy, M. Emergence of hierarchy in cost-driven growth of spatial networks. Proc. Natl Acad. Sci.
USA 110, 8824–8829 (2013). Article CAS ADS MathSciNet Google Scholar * Black, W. R. Transportation: a geographical analysis (Guilford Press, 2003). * Gastner, M. T. & Newman, M. E.
Shape and efficiency in spatial distribution networks. J. Stat. Mech-Theory E. 2006, P01015 (2006). Article ADS Google Scholar * Horner, M. W. & Marion, B. M. A spatial
dissimilarity-based index of the jobs–housing balance: Conceptual framework and empirical tests. Urban Stud. 46, 499–517 (2009). Article Google Scholar * Horner, M. W. Extensions to the
concept of excess commuting. Environ. Plann. A 34, 543–566 (2002). Article Google Scholar * Kanaroglou, P. S., Higgins, C. D. & Chowdhury, T. A. Excess commuting: a critical review and
comparative analysis of concepts, indices and policy implications. J. Transp. Geogr. 44, 13–23 (2015). Article Google Scholar * Latora, V. & Marchiori, M. Transferability of
collective transportation line networks from a topological and passenger demand perspective. Netw. Heterog. Media 10 (2015). * Deville, P. et al. Dynamic population mapping using mobile
phone data. Proc. Natl Acad. Sci. USA 111, 15888–15893 (2014). Article CAS ADS Google Scholar * Llorente, A., Garcia-Herranz, M., Cebrian, M. & Moro, E. Social media fingerprints of
unemployment. PLos One 10, e0128692 (2015). Article Google Scholar * Zhou, J., Murphy, E. & Long, Y. Commuting efficiency in the beijing metropolitan area: an exploration combining
smartcard and travel survey data. J. Transp. Geogr. 41, 175–183 (2014). Article Google Scholar * de Montjoye, Y.-A., Radaelli, L., Singh, V. K. et al. Unique in the shopping mall: On the
reidentifiability of credit card metadata. Science 347, 536–539 (2015). Article CAS ADS Google Scholar * Pentland, A. Social Physics: How Good Ideas Spread-The Lessons from a New Science
(Penguin, 2014). * Louail, T. et al. From mobile phone data to the spatial structure of cities. Sci. Rep. 4 (2014). * Aker, J. C. & Mbiti, I. M. Mobile phones and economic development
in africa. J. Econ. Perspect. 24, 207–232 (2010). Article Google Scholar * Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. & Tatem, A. J. Population distribution, settlement patterns
and accessibility across africa in 2010. PLos One 7, e31743 (2012). Article CAS ADS Google Scholar * Louf, R. et al. Spatial structure and efficiency of commuting in senegalese cities.
D4D 2015 Challenge Book (2015). * Blondel, V. D., Decuyper, A. & Krings, G. A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4 (2015). * Open Street Map.
https://www.openstreetmap.org (Accessed: 5th April 2015). * World Bank. http://www.worldbank.org/projects/P087304/dakar-diamniadio-toll-highway?lang=en (Accessed: 10th October 2015). *
African Development Bank Group.
http://www.afdb.org/fileadmin/uploads/afdb/Documents/Environmental-and-Social-Assessments/Senegal_-_Dakar_Toll_Road_-_Phase_2_-_Diamniadio-Aibd_Section_-_ESIA_Executive_Summary.pdf
(Accessed: 10th October 2015). * de Montjoye, Y.-A., Smoreda, Z., Trinquart, R., Ziemlicki, C. & Blondel, V. D. D4d-senegal: the second mobile phone data for development challenge.
_arXiv preprint: 1407.4885_ (2014). * D4D 2015 Challenge Book. http://netmob.org/assets/img/NetMob2015_D4DChallengeSenegal_Sessions_Scientific_Papers.pdf (Accessed: 10th September 2015). *
WorldPop. https://www.worldpop.org.uk/ (Accessed: 5th April 2015). * Jiang, S. et al. A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In
_Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing,_ 2 (ACM, 2013). * Alexander, L., Jiang, S., Murga, M. & González, M. C. Origin–destination trips by purpose
and time of day inferred from mobile phone data. Transport. Res. C-Emer. (2015). * Hamilton, B. W. Wasteful commuting. J. Polit. Econ. 90, 1035–1053 (1982). Article Google Scholar *
Martori, J. C. & Suriñach-Caralt, J. Classical models of urban population density. the case of barcelona metropolitan area. In _ERSA conference papers,_ ersa01p46 (European Regional
Science Association, 2001). * Louf, R. & Barthélemy, M. Patterns of residential segregation. _arXiv preprint arXiv:1511.04268_ (2015). * Lenormand, M. et al. Influence of
sociodemographics on human mobility. Sci. Rep. 5 (2015). Download references ACKNOWLEDGEMENTS This study was performed using mobile communication data made available by ORANGE/SONATEL within
the framework of the D4D Challenge. We acknowledge the organizers of the D4D Challenge and ORANGE/SONATEL Group for permitting us to use the Senegal CDR dataset. R.L. acknowledges Guoyue Wu
from Beijing International Studies University for the helpful discussion on the general habits and behaviors of residents in Dakar. L.D. acknowledges Jianzhu Wang for the discussion on the
transportation situation in Africa. This work is supported by the Fundamental Research Funds for the Central Universities with the grant No. 2015KJJCB13. AUTHOR INFORMATION AUTHORS AND
AFFILIATIONS * School of Architecture, Tsinghua University, Beijing, 100084, China Lei Dong * School of Systems Science, Beijing Normal University, Beijing, 100875, China Ruiqi Li, Jiang
Zhang & Zengru Di Authors * Lei Dong View author publications You can also search for this author inPubMed Google Scholar * Ruiqi Li View author publications You can also search for this
author inPubMed Google Scholar * Jiang Zhang View author publications You can also search for this author inPubMed Google Scholar * Zengru Di View author publications You can also search
for this author inPubMed Google Scholar CONTRIBUTIONS L.D. and R.L. designed and performed the study. All the authors contributed to writing of the manuscript. ETHICS DECLARATIONS COMPETING
INTERESTS The authors declare no competing financial interests. ELECTRONIC SUPPLEMENTARY MATERIAL SUPPLEMENTARY INFORMATION RIGHTS AND PERMISSIONS This work is licensed under a Creative
Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in
the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of
this license, visit http://creativecommons.org/licenses/by/4.0/ Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Dong, L., Li, R., Zhang, J. _et al._ Population-weighted
efficiency in transportation networks. _Sci Rep_ 6, 26377 (2016). https://doi.org/10.1038/srep26377 Download citation * Received: 14 January 2016 * Accepted: 29 April 2016 * Published: 27
May 2016 * DOI: https://doi.org/10.1038/srep26377 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is
not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative