Phosphoramidite-based photoresponsive ligands displaying multifold transfer of chirality in dynamic enantioselective metal catalysis

Phosphoramidite-based photoresponsive ligands displaying multifold transfer of chirality in dynamic enantioselective metal catalysis


Play all audios:

Loading...

ABSTRACT The transfer and amplification of chirality in biological and artificial systems is a fundamental process that allows for a dynamic control of structure and function. Only a few


responsive systems harness the dynamic transfer of chirality and can act as photoswitchable chiral inductors. Here we demonstrate that photoresponsive phosphoramidite ligands based on a


chiral biaryl-substituted molecular switch can be used to alter the activity and invert the stereoselectivity of a copper-catalysed asymmetric conjugate addition. The phosphoramidites were


obtained as pairs of diastereoisomers, each displaying a distinct catalytic activity and stereoselectivity as a result of the light-controlled matched–mismatched interaction between the


fixed chirality at the phosphorus atom and the dynamic chirality of the switch. The result is an elegant balance of two competing catalysts, of which the complementary catalytic performance


is tunable via light, which takes advantage of the internal dynamic transfer of chirality on reversible alkene photoisomerization. This discovery paves the way for the future development of


more complex chirality-dependent photoresponsive and multitasking catalysts. Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ENANTIODIVERGENT EPOXIDATION OF ALKENES WITH A PHOTOSWITCHABLE PHOSPHATE


MANGANESE-SALEN COMPLEX Article 22 September 2022 CHIRAL BRØNSTED ACID-CONTROLLED INTERMOLECULAR ASYMMETRIC [2 + 2] PHOTOCYCLOADDITIONS Article Open access 30 September 2021 PORPHYRIN AS A


VERSATILE VISIBLE-LIGHT-ACTIVATABLE ORGANIC/METAL HYBRID PHOTOREMOVABLE PROTECTING GROUP Article Open access 24 June 2022 DATA AVAILABILITY All the data generated or analysed during this


study are included in this article (and its Supplementary Information files). Crystallographic data for the structure L1 reported has been deposited at the Cambridge Crystallographic Data


Centre (CCDC) under the deposition number 1990520. This data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. REFERENCES * Bentley, R. in _Encyclopedia of Molecular


Cell Biology and Molecular Medicine_ 2nd edn (ed. Mayers, R. A.) 579–618 (Wiley-VCH, 2006). * Browne, W. R. & Feringa, B. L. Making molecular machines work. _Nat. Nanotechnol._ 1, 25–35


(2006). Article  CAS  PubMed  Google Scholar  * Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). _Angew. Chem. Int. Ed._ 56, 11060–11078 (2017).


Article  CAS  Google Scholar  * Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. _Chem. Rev._ 115, 10081–10206 (2015). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. _Chem.


Rev._ 105, 1377–1400 (2005). Article  CAS  PubMed  Google Scholar  * Göstl, R., Senf, A. & Hecht, S. Remote-controlling chemical reactions by light: towards chemistry with high


spatio-temporal resolution. _Chem. Soc. Rev._ 43, 1982–1996 (2014). Article  PubMed  CAS  Google Scholar  * Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. _Comprehensive Asymmetric


Catalysis_ including Supplements 1 and 2 (Springer, 2004). * Davie, E. A. C., Mennen, S. M., Xu, Y. & Miller, S. J. Asymmetric catalysis mediated by synthetic peptides. _Chem. Rev._ 107,


5759–5812 (2007). Article  PubMed  CAS  Google Scholar  * Yu, J., RajanBabu, T. V. & Parquette, J. R. Conformationally driven asymmetric induction of a catalytic cendrimer. _J. Am.


Chem. Soc._ 130, 7845–7847 (2008). Article  CAS  PubMed  Google Scholar  * Desmarchelier, A. et al. Correlation between the selectivity and the structure of an asymmetric catalyst built on a


chirally amplified supramolecular helical scaffold. _J. Am. Chem. Soc._ 138, 4908–4916 (2016). Article  CAS  PubMed  Google Scholar  * Stoll, R. S. & Hecht, S. Artificial light-gated


catalyst systems. _Angew. Chem. Int. Ed._ 49, 5054–5075 (2010). Article  CAS  Google Scholar  * Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. _Chem. Soc. Rev._


44, 5341–5370 (2015). Article  CAS  PubMed  Google Scholar  * Vlatković, M., Collins, B. S. L. & Feringa, B. L. Dynamic responsive systems for catalytic function. _Chem. Eur. J._ 22,


17080–17111 (2016). Article  PubMed  CAS  Google Scholar  * van Dijk, L. et al. Molecular machines for catalysis. _Nat. Rev. Chem._ 2, 0117 (2018). Article  CAS  Google Scholar  * Dorel, R.


& Feringa, B. L. Photoswitchable catalysis based on the isomerisation of double bonds. _Chem. Commun._ 55, 6477–6486 (2019). Article  CAS  Google Scholar  * Wang, J. & Feringa, B. L.


Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. _Science_ 331, 1429–1432 (2011). Article  CAS  PubMed  Google Scholar  * Vlatković, M., Bernardi,


L., Otten, E. & Feringa, B. L. Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. _Chem. Commun._ 50, 7773–7775 (2014). Article  CAS  Google


Scholar  * Yamamoto, T., Yamada, T., Nagata, Y. & Suginome, M. High-molecular-weight polyquinoxaline-based helically chiral phosphine (PQXphos) as chirality-switchable, reusable, and


highly enantioselective monodentate ligand in catalytic asymmetric hydrosilylation of styrenes. _J. Am. Chem. Soc._ 132, 7899–7901 (2010). Article  CAS  PubMed  Google Scholar  * Mortezaei,


S., Catarineu, N. R. & Canary, J. W. A redox-reconfigurable, ambidextrous asymmetric catalyst. _J. Am. Chem. Soc._ 134, 8054–8057 (2012). Article  CAS  PubMed  Google Scholar  * Sud, D.,


Norsten, T. B. & Branda, N. R. Photoswitching of stereoselectivity in catalysis using a copper dithienylethene complex. _Angew. Chem. Int. Ed._ 44, 2019–2021 (2005). Article  CAS 


Google Scholar  * Zhao, D., Neubauer, T. M. & Feringa, B. L. Dynamic control of chirality in phosphine ligands for enantioselective catalysis. _Nat. Commun._ 6, 6652 (2015). Article  CAS


  PubMed  PubMed Central  Google Scholar  * Eigen, M. Wilkins, R. G. in _Mechanisms of Inorganic Reactions_ (eds Kleinberg, J., Murmann, R. K., Fraser, R. T. M. & Bauman, J.) 55–80


(American Chemical Society, 1965). * Otsuki, J., Akasaka, T. & Araki, K. Molecular switches for electron and energy transfer processes based on metal complexes. _Coord. Chem. Rev._ 252,


32–56 (2008). Article  CAS  Google Scholar  * Shinoda, S. Dynamic cyclen–metal complexes for molecular sensing and chirality signaling. _Chem. Soc. Rev._ 42, 1825–1835 (2013). Article  CAS 


PubMed  Google Scholar  * Boiocchi, M. & Fabbrizzi, L. Double-stranded dimetallic helicates: assembling–disassembling driven by the Cu(i)/Cu(ii) redox change and the principle of


homochiral recognition. _Chem. Soc. Rev._ 43, 1835–1847 (2014). Article  CAS  PubMed  Google Scholar  * Zhao, D., van Leeuwen, T., Cheng, J. & Feringa, B. L. Dynamic control of chirality


and self-assembly of double-stranded helicates with light. _Nat. Chem._ 9, 250–256 (2017). Article  CAS  PubMed  Google Scholar  * Ousaka, N., Takeyama, Y., Iida, H. & Yashima, E.


Chiral information harvesting in dendritic metallopeptides. _Nat. Chem._ 3, 856–861 (2011). Article  CAS  PubMed  Google Scholar  * Miyake, H. & Tsukube, H. Coordination chemistry


strategies for dynamic helicates: time-programmable chirality switching with labile and inert metal helicates. _Chem. Soc. Rev._ 41, 6977–6991 (2012). Article  CAS  PubMed  Google Scholar  *


Koumura, N., Geertsema, E. M., Meetsma, A. & Feringa, B. L. Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. _J. Am. Chem. Soc._ 122,


12005–12006 (2000). Article  CAS  Google Scholar  * Feringa, B. L. The art of building small: from molecular switches to molecular motors. _J. Org. Chem._ 72, 6635–6652 (2007). Article  CAS


  PubMed  Google Scholar  * Schliwa, M. _Molecular Motors_ (Wiley-VCH, 2006). * Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven


monodirectional molecular rotor. _Nature_ 401, 152–155 (1999). Article  CAS  PubMed  Google Scholar  * Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L.


Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation


by structural modification. _J. Am. Chem. Soc._ 124, 5037–5051 (2002). Article  CAS  PubMed  Google Scholar  * Pizzolato, S. F. et al. Central-to-helical-to-axial-to-central transfer of


chirality with a photoresponsive catalyst. _J. Am. Chem. Soc._ 140, 17278–17289 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kistemaker, J. C. M., Pizzolato, S. F., van


Leeuwen, T., Pijper, T. C. & Feringa, B. L. Spectroscopic and theoretical identification of two thermal isomerization pathways for bistable chiral overcrowded alkenes. _Chem. Eur. J._


22, 13478–13487 (2016). Article  CAS  PubMed  Google Scholar  * Wezenberg, S. J., Vlatković, M., Kistemaker, J. C. M. & Feringa, B. L. Multi-state regulation of the dihydrogen phosphate


binding affinity to a light- and heat-responsive bis-urea receptor. _J. Am. Chem. Soc._ 136, 16784–16787 (2014). Article  CAS  PubMed  Google Scholar  * Greb, L. & Lehn, J.-M.


Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. _J. Am. Chem. Soc._ 136, 13114–13117 (2014). Article  CAS  PubMed  Google Scholar  * Vlatković, M.,


Feringa, B. L. & Wezenberg, S. J. Dynamic inversion of stereoselective phosphate binding to a bisurea receptor controlled by light and heat. _Angew. Chem. Int. Ed._ 55, 1001–1004 (2016).


Article  CAS  Google Scholar  * Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. _Angew. Chem. Int. Ed._ 49, 2486–2528 (2010). Article  CAS


  Google Scholar  * Feringa, B. L. Phosphoramidites: marvellous ligands in catalytic asymmetric conjugate addition. _Acc. Chem. Res._ 33, 346–353 (2000). Article  CAS  PubMed  Google Scholar


  * Grabulosa, A. _P-Stereogenic Ligands in Enantioselective Catalysis_ 5–16 (Royal Society of Chemistry, 2011). * Imamoto, T., Kikuchi, S., Miura, T. & Wada, Y. Stereospecific reduction


of phosphine oxides to phosphines by the use of a methylation reagent and lithium aluminum hydride. _Org. Lett._ 3, 87–90 (2001). Article  CAS  PubMed  Google Scholar  * Cahn, R. S.,


Ingold, C. & Prelog, V. Specification of molecular chirality. _Angew. Chem. Int. Ed._ 5, 385–415 (1966). Article  CAS  Google Scholar  * Prelog, V. & Helmchen, G. Basic principles of


the CIP-system and proposals for a revision. _Angew. Chem. Int. Ed._ 21, 567–583 (1982). Article  Google Scholar  * Reetz, M. T., Ma, J.-A. & Goddard, R. BINOL-derived monodentate


phosphites and phosphoramidites with phosphorus stereogenic centers: novel ligands for transition-metal catalysis. _Angew. Chem. Int. Ed._ 44, 412–415 (2005). Article  CAS  Google Scholar  *


Gavrilov, K. N. et al. (_S_)-6-bromo-BINOL-based phosphoramidite ligand with _C_1 symmetry for enantioselective hydrogenation and allylic substitution. _Chirality_ 22, 844–848 (2010).


Article  CAS  PubMed  Google Scholar  * Trost, B. M., Bringley, D. A. & Silverman, S. M. Asymmetric synthesis of methylenetetrahydrofurans by palladium-catalyzed [3 + 2] cycloaddition of


trimethylenemethane with aldehydes—a novel ligand design. _J. Am. Chem. Soc._ 133, 7664–7667 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * González, A. Z. & Dean


Toste, F. Gold(i)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes. _Org. Lett._ 12, 200–203 (2010). Article  PubMed  PubMed Central  CAS  Google Scholar  * Wiedbrauk, S.,


Bartelmann, T., Thumser, S., Mayer, P. & Dube, H. Simultaneous complementary photoswitching of hemithioindigo tweezers for dynamic guest relocalization. _Nat. Commun._ 9, 1456 (2018).


Article  PubMed  PubMed Central  CAS  Google Scholar  * De Bo, G., Leigh, D. A., McTernan, C. T. & Wang, S. A complementary pair of enantioselective switchable organocatalysts. _Chem.


Sci._ 8, 7077–7081 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Malda, H., van Zijl, A. W., Arnold, L. A. & Feringa, B. L. Enantioselective copper-catalyzed allylic


alkylation with dialkylzincs using phosphoramidite ligands. _Org. Lett._ 3, 1169–1171 (2001). Article  CAS  PubMed  Google Scholar  * van Zijl, A. W., Arnold, L. A., Minnaard, A. J. &


Feringa, B. L. Highly enantioselective copper-catalyzed allylic alkylation with phosphoramidite ligands. _Adv. Synth. Catal._ 346, 413–420 (2004). Article  CAS  Google Scholar  Download


references ACKNOWLEDGEMENTS This work was supported financially by the Netherlands Organization for Scientific Research (NWO-CW), Foundation for Fundamental Research on Matter (FOM, a


subsidiary of NWO), the Zernike Institute for Advanced Materials, The Royal Netherlands Academy of Arts and Sciences (KNAW), The European Research Council (Advanced Investigator Grant no.


694345 to B.L.F.), Ministry of Education, Culture and Science (Gravitation program 024.001.035) and the University of Groningen. The authors thank E. Otten for the X-ray structure


experiments. AUTHOR INFORMATION Author notes * These authors contributed equally: Stefano F. Pizzolato and Peter Štacko. AUTHORS AND AFFILIATIONS * Centre for Systems Chemistry, Stratingh


Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, AG Groningen, the Netherlands Stefano F.


Pizzolato, Peter Štacko, Jos C. M. Kistemaker, Thomas van Leeuwen & Ben L. Feringa Authors * Stefano F. Pizzolato View author publications You can also search for this author inPubMed 


Google Scholar * Peter Štacko View author publications You can also search for this author inPubMed Google Scholar * Jos C. M. Kistemaker View author publications You can also search for


this author inPubMed Google Scholar * Thomas van Leeuwen View author publications You can also search for this author inPubMed Google Scholar * Ben L. Feringa View author publications You


can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.F.P., P.S., J.C.M.K. and B.L.F. conceived the project. S.F.P. and P.S. carried out the experimental work. J.C.M.K. and


T.v.L. conducted the computational study. All the authors contributed to the design of the experiments, the analysis of the data and the writing of the paper. CORRESPONDING AUTHOR


Correspondence to Ben L. Feringa. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral


with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Methods, Figs. 1–18 and Tables 1 and


2. COMPUTATIONAL DATA 1 Cartesian coordinates. SUPPLEMENTARY DATA Crystallographic data for compound L1. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Pizzolato, S.F., Štacko, P., Kistemaker, J.C.M. _et al._ Phosphoramidite-based photoresponsive ligands displaying multifold transfer of chirality in dynamic enantioselective metal catalysis.


_Nat Catal_ 3, 488–496 (2020). https://doi.org/10.1038/s41929-020-0452-y Download citation * Received: 21 October 2019 * Accepted: 13 March 2020 * Published: 04 May 2020 * Issue Date: June


2020 * DOI: https://doi.org/10.1038/s41929-020-0452-y SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable


link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative