Discordant pair analysis for sample efficient model evaluation

Discordant pair analysis for sample efficient model evaluation


Play all audios:

Loading...

ABSTRACT We present a new technique for assessing the effectiveness of a classification algorithm using discordant pair analysis. This method utilizes a known performance baseline algorithm


and a large unlabeled dataset with an assumed class distribution to obtain overall performance estimates by only assessing the subset of examples that the algorithms classify discordantly.


Our approach offers an efficient way to evaluate the performance of an algorithm that minimizes the human adjudications needed while also maintaining precision in the evaluation and in some


cases improving the evaluation quality by reducing human adjudication errors. This approach is a computationally efficient alternative to the traditional exhaustive method of performance


evaluation and has the potential to improve the accuracy of performance estimates. Simulation studies show that the discordant pair method reduces the number of adjudications by over 90%,


while maintaining the same level of sensitivity and specificity. SIMILAR CONTENT BEING VIEWED BY OTHERS CLASSIFICATION PERFORMANCE ASSESSMENT FOR IMBALANCED MULTICLASS DATA Article Open


access 10 May 2024 THE _G3MCLASS_ IS A PRACTICAL SOFTWARE FOR MULTICLASS CLASSIFICATION ON BIOMARKERS Article Open access 05 November 2022 RE-EVALUATION OF PUBLICLY AVAILABLE GENE-EXPRESSION


DATABASES USING MACHINE-LEARNING YIELDS A MAXIMUM PROGNOSTIC POWER IN BREAST CANCER Article Open access 05 October 2023 INTRODUCTION Supervised machine learning models require large


quantities of labeled data to optimize and validate performance. The quality of these data labels is especially important in applications such as medical diagnostics, where the model


decisions can have large impacts on patient outcomes. Ensuring proper quality relies on sourcing data labels from certified professionals, which is both expensive and time consuming. Thus,


in resource constrained environments, it becomes necessary to seek to minimize the number of data labels required to characterize a machine learning model’s performance. A separate but


related issue arises when updating machine learning models, by training new data either on an existing model or on a completely new modeling architecture. In both cases, characterizing the


new model’s performance requires a completely new set of data labels for the validation dataset. That is, in many regulatory settings, reusing validation datasets across model updates is not


feasible due to the potential for data leakage and concerns around generalizability1. Another issue that arises with high performing models, challenging cases become critical for comparing


model quality. These challenging cases can be difficult to find and may require large amounts of manual adjudications before enough edge cases are obtained and labeled to have an accurate


quantification of performance of any model. A final issue is related to the regulatory burden associated with medical diagnostics. In many cases a full description and pre-specification of


the validation data label acquisition approach is necessary, including potential sample sizes and desired effect sizes2. To address each of these issues, we are proposing a novel technique


for achieving a reduced size validation dataset using a so-called discordant pair analysis based on the model predictions from a baseline and new, updated model—with a discordant pair


analysis, we use the off-diagonals of the 2 × 2 confusion matrix, where the predictions of a baseline and updated model disagree. Previous methods for improving or reducing the number of


data labels have involved ranking schemes or active learning approaches that used the model being trained to subsample data requiring labels. In3, a label cleaning method is proposed that


iteratively ranks data instances based on the estimated label correctness and labelling difficulty associated with each sample. Based on the ranking scheme, annotators relabel data until a


budget is exhausted, where the budget can be time and/or monetary based. This active learning model can be applied to the use case of data labeling in the context of model validation, but


the methodology was developed with the existence of noisy labels in mind, rather than no labels at all.4 proposed an active learning framework that is a sample efficient technique that the


authors name active testing. With the active testing approach, sample points are selected for labeling based on maximizing the accuracy of an empirical risk estimate. In both described


approaches, the underlying methodology relies on labeling data based on the quality of existing labels or maximizing some performance metric. In a high regulatory burden setting, where


pre-specification of all validation details is required, the label cleaning approach of3 would not reduce the number of labels requiring adjudication. Similarly, the active testing approach


of4 is not applicable since all sample points would need to be selected for labeling to maximize accuracy—random subsampling is not a preferred approach in a high regulatory burden


environment. In this paper, we begin by precisely defining the discordant pair analysis technique. We apply our approach to the updating of a neural network model used for the classification


of atrial fibrillation (AF) in electrocardiograms (ECG) collected from implantable cardiac monitors (ICMs)5. The goal in this use case is to replace an existing model running in a


production environment with a better performing model that has statistically significantly superior specificity for detecting AF. Next, using several simulation studies, we analyze the


impact of several assumptions on the number of expert adjudications required and the updated model performance. We finish the paper with a discussion of the approach, the potential


limitations, and future work. METHODS In this work, we develop a method for reducing the number of model validation samples required for labeling based on disagreement between a baseline


model and a new, updated model, where the baseline model has known performance that is expected to generalize to the validation data. Importantly, this method is developed for binary labels.


An overview of the approach is shown in Fig. 1. The discordant pair method proceeds as follows. We begin with an estimate of the prevalence of the binary outcome, \(PREV\), a sample size,


\(n\), the estimated number of positive outcomes \(P=n\times PREV\), and a performance requirement definition, along with statistical power considerations, of the desired sensitivity of the


updated model; see, e.g.,6 for further sample size considerations around diagnostic metrics. Thus, we procure a total sample size of \(n\) samples. The \(n\) samples are evaluated similarly


to an A/B testing framework, where each of the samples is evaluated on both the baseline and updated models. Next, results are collected into a 2 × 2 matrix, as shown in Table 1. In this


framework, we identify binary model outcomes from two models as concordant, \(C={C}_{PP}+{C}_{NN}\), or discordant, \(D={D}_{NP}+{D}_{PN}\), and, of course, the total sample size is


\(n=C+D\). We can further decompose each of the four paired concordance and discordant outcomes as $${C}_{PP}=T{P}_{0C}+F{P}_{0C}+T{P}_{1C}+F{P}_{1C},$$


$${C}_{NN}=T{N}_{0C}+F{N}_{0C}+T{N}_{1C}+F{N}_{1C},$$ $${D}_{NP}=T{N}_{0D}+F{N}_{0D}+T{P}_{1D}+F{P}_{1D},$$ $${D}_{PN}=T{P}_{0D}+F{P}_{0D}+T{N}_{1D}+F{N}_{1D},$$ where \(T{P}_{ij}\),


\(T{N}_{ij}\), \(F{P}_{ij}\), and \(F{N}_{ij}\) are the true positive, true negative, false positive, and false negative counts, respectively, \(i\in \left(0, 1\right)\) indexes the baseline


and updated models, respectively, and \(j\in \left(C, D\right)\) indexes the concordant and discordant sets, respectively. As an illustrative example to help guide understanding,


\(T{P}_{0C}\) is the number of true positive outcomes from the baseline model in the concordant set. Recall, at this stage none of the samples are labeled. We are proposing to label only the


discordant outcomes where the models disagree, i.e., samples that contribute to \({D}_{NP}\) and \({D}_{PN}\), to facilitate a final estimate of the updated model performance. To see this,


we can estimate the sensitivity of the updated model, \(SEN{S}_{1}\), using the following approach. Begin by assuming a sensitivity for the baseline model, \(SEN{S}_{0}\), estimated from a


previous validation or performance surveillance effort. Thus, we assume: $$SEN{S}_{0}=\frac{{TP}_{0}}{P}=\frac{{TP}_{0C}+ {TP}_{0D}}{P} ,$$ and solving for \({TP}_{0C}\) gives


$${TP}_{0C}=SEN{S}_{0}\times P- {TP}_{0D}.$$ We must have that \({TP}_{0C}={TP}_{1C}\), that is, the number of true positives between the two models in the concordant only set are


equivalent. Then, we can estimate the sensitivity of the updated model as $$\begin{array}{lll}SEN{S}_{1}& =& \frac{T{P}_{1}}{P},\\ & =& \frac{{TP}_{1C}+{TP}_{1D}}{P},\\ &


=& \frac{\left(SEN{S}_{0}\times P-T{P}_{0D}\right)+T{P}_{1D}}{P},\end{array}$$ where \(P\) is the estimated number of binary outcomes and \(T{P}_{i}\), \(i\in (\mathrm{0,1})\), is the


number of true positives from model \(i\). This derivation shows that the sensitivity of the updated model can be calculated using only the baseline model sensitivity, positive outcome


prevalence, and values from the discordant set. We can use a similar application to estimate the specificity of the updated model, \(SPE{C}_{1}\), as well. Assuming a specificity for the


baseline model, \({SPEC}_{0}\), we have: $${SPEC}_{0}=\frac{{TN}_{0}}{N}=\frac{{TN}_{0C}+ {TN}_{0D}}{N} ,$$ where \(N=n-P\) is the assumed number of negative binary outcomes. Solving for


\({TN}_{0C}\) gives $${TN}_{0C}={SPEC}_{0}\times N- {TN}_{0D},$$ where, \({TN}_{0C}\) is the number of true negative outcomes from the baseline model in the concordant set. Similar to the


sensitivity calculation, we have that \({TN}_{0C}={TN}_{1C}\), i.e., the number of true negatives between the two models in the concordant set are equivalent. Then, we can estimate the


specificity of the updated model, \(SPE{C}_{1}\), as $$\begin{array}{lll}{SPEC}_{1}& =& \frac{T{N}_{1}}{N},\\ & =& \frac{{TN}_{1C}+{TN}_{1D}}{N},\\ & =&


\frac{\left({SPEC}_{0}\times N-T{N}_{0D}\right)+T{N}_{1D}}{N}.\end{array}$$ We’ve thus demonstrated that the specificity of the updated model can be calculated using only the baseline model


specificity, negative outcome prevalence, and values from the discordant set. CONFIDENCE INTERVALS Beyond point estimates of the sensitivity and specificity, we may be required to estimate


confidence intervals, as is often the case in a regulatory setting where non-inferiority or superiority of an updated model is to be demonstrated7. The sensitivity and specificity metrics


depend in part on assumptions based on data sets collected in the past, and so a bootstrapping approach8 can be used to propagate uncertainties and obtain confidence intervals for the


sensitivity and specificity of the updated model. The bootstrapping approach uses multi-stage Monte Carlo sampling and proceeds as follows. Beginning with baseline model sensitivity and


specificity values, \(SEN{S}_{0}\) and \(SPE{C}_{0}\), respectively, and positive outcome prevalence \(PREV\), for the \(k\) th Monte Carlo sample, \(k=1,\dots ,K\), we have:


$$\begin{array}{lll}PRE{V}_{k}& \sim & Beta\left(100, 100/PREV-100\right),\\ {P}_{k}& \sim & Binom\left(n,PRE{V}_{k} \right),\\ T{P}_{0k}& \sim & Binom\left({P}_{k},


SEN{S}_{0}\right),\\ SEN{S}_{1k}& \sim & Beta\left(T{P}_{0k}-T{P}_{0D}+T{P}_{1D}+1,{P}_{k}-\left(T{P}_{0k}-T{P}_{0D}+T{P}_{1D}\right)+1\right),\end{array}$$ resulting in \(K\) Monte


Carlo samples of the updated model sensitivity. We then sample the updated model specificity: $$\begin{array}{lll}{N}_{k}& =& n-{P}_{k}\\ T{N}_{0k}& \sim &


Binom\left({N}_{k}, SPE{C}_{0}\right),\\ SPE{C}_{1k}& \sim & Beta\left(T{N}_{0k}-T{N}_{0D}+T{N}_{1D}+1,{N}_{k}-\left(T{N}_{0k}-T{N}_{0D}+T{N}_{1D}\right)+1\right),\end{array}$$


where, in general, \(Beta\left(A,B\right)\) is a beta distribution with rates \(A\) and \(B\), and \(Binom\left(C,D\right)\) is a Binomial distribution with \(C\) trials and probability


\(D\). Upon sampling each \(SEN{S}_{1k}\) and \(SPE{C}_{1k}\) we can compute upper and lower quantiles of the samples to estimate the confidence bounds, e.g., the 2.5th and 97.5th quantiles


correspond to two-sided 95% confidence bounds. In this paper, we use \(K=\mathrm{10,000}\) Monte Carlo samples. RESULTS REAL WORLD EXAMPLE The discordant pair analysis was applied to the


validation of a cloud-based deep neural network model used as a tool for secondary screening of electrocardiogram (ECG) recordings5. Briefly, insertable cardiac monitors (ICMs) are implanted


in patients requiring long-term cardiac monitoring. Upon detection of atrial fibrillation (AF) episodes in the heart rhythm, the ICM will transmit 2-min ECG recordings to a cloud-system for


further screening by a deep neural network. The purpose of the neural network is to reduce the false positive AF detections that are ultimately shown to clinicians for review. The baseline


model was characterized during an initial validation effort5. During the initial characterization, the ICM’s AF episode-level prevalence was found to be 61.5%. The baseline model achieved a


sensitivity of 98.8% and a specificity of 72.7% for detecting AF. We next worked to improve the specificity of the baseline model by updating the model weights on a new dataset. Upon


training an updated model, a completely independent dataset of 4,302 ICM-detected AF episodes from 771 patients was created over a 12-month period ending June, 2021. The baseline and updated


models were evaluated on the 4,302 episodes. Table 2 shows the evaluation results. We can see that the discordant set has size \(D={D}_{NP}+{D}_{PN}=307\). Following our discordant pair


approach, we began with a baseline model sensitivity and specificity of \(SEN{S}_{0}=0.988\) and \(SPE{C}_{0}=0.727\), respectively, and assumed positive and negative outcome prevalences of


2,645 and 1,657, respectively. Results are shown in Table 3. We estimate the updated model sensitivity as 99.1% (95% CI: 98.5%, 99.6%), and the updated model specificity as 87.5% (95% CI:


83.9%, 92.0%). To validate our approach, we created a 2nd independent dataset of 1,372 ICM-detected AF episodes from 331 different patients than those collected for the discordant pair


analysis. In this new data set all samples were adjudicated similarly to a traditional validation approach where each of the 1,372 episodes were labeled. Results are shown in Table 3. Our


updated model achieved a sensitivity of 99.1% (95% CI: 98.2%, 99.7%) and a specificity of 88.9% (95% CI: 86.2%, 91.2%). Conversely, the baseline model achieved a sensitivity of 99.4% (95%


CI: 98.6%, 99.8%) and a specificity of 81.4% (95% CI: 78.2%, 84.3%). SIMULATION STUDY To assess the efficacy of our approach, we carried out three simulation studies to investigate the (1)


effect of correlation between the baseline and updated model predictions; (2) effect of sample size; and (3) effect of misspecification of the positive outcome prevalence. For each


simulation study, we assumed sensitivity values of 0.988 and 0.990 for the baseline and updated models, respectively, and specificity values of 0.727 and 0.882 for the baseline and updated


models, respectively. Correlated binary outcomes were simulated using a bivariate Gaussian copula with binomial marginals, see Supplementary Appendix for details. EFFECT OF MODEL CORRELATION


To assess the effect of correlation between the baseline and updated model outcomes. We simulated 10,000 trials over correlation values ranging from 0 to 0.99. Similar to the previous


simulation study, we assumed a positive outcome prevalence of 0.615, and now a constant sample size of 5000. As shown in Fig. 2_,_ we found that the correlation primarily affects the percent


reduction in number of adjudications needed and CI coverage probability. We see that the specificity CI coverage probability is at or above the nominal 95% coverage for all correlation


values. The percent adjudication reduction is above 80% for all correlation values, with high correlation values achieving the greatest percent reduction in the number of adjudications


needed at well over 90%. EFFECT OF SAMPLE SIZE To assess the effect of sample size on metric precision, we simulated 10,000 trials over samples sizes ranging from 1000 to 10,000 bivariate


binary outcomes. For each trial, we assumed a positive outcome prevalence of 0.615 and a between model correlation of 0.90. As shown in Fig. 3, the sample size primarily affects the mean


squared error (MSE) and confidence interval (CI) width of the sensitivity and specificity. With MSE, we compared the estimated metrics using the discordant pair analysis to the observed


metric values. As expected, as the sample size increases, both MSE and CI width decreases. As the sample size approaches 5000, the MSEs drops below 0.0001 and the CI widths are below 0.08.


We also investigated the effect of sample size on the CI coverage probability and percent reduction in number of adjudications needed but found no association. Complete results are shown in


the Supplementary Appendix. EFFECT OF MISSPECIFICATION OF PREVALENCE Finally, we assessed the effect of misspecification of the positive outcome prevalence. We simulated 10,000 trials over


actual prevalence values ranging from 0.1 to 0.9, while the assumed prevalence was held constant at 0.615. Recall, this implies that we are assuming that the positive outcome prevalence is


61.5%, while the simulations allow for actual prevalence values ranging from 10 to 90%. For each trial, we assumed a between model correlation of 0.90 and a constant sample size of 5000.


Figure 4 shows the effect of misspecified prevalence on each of MSE, CI width, and CI coverage probability. Beginning with MSE, the sensitivity is relatively constant until the assumed


prevalence of 0.615 is achieved, then the MSE of sensitivity increases, a pattern we also see repeated with the CI width. Meanwhile, the MSE of specificity decreases for prevalence values


less than 0.615, until the assumed prevalence of 0.615 is achieved and remains relatively low as the prevalence increases. In contrast, the specificity CI width is relatively flat until the


assumed prevalence is achieved, and then decreases as the prevalence increases. Finally, the coverage probabilities of both the sensitivity and specificity are high for low prevalence values


but decrease sharply as the prevalence increases beyond the assumed prevalence of 0.615. CONCLUSION AND DISCUSSION Our application of the discordant pair analysis to a real-world example


demonstrates the method’s ability to estimate important diagnostic metrics with a reduced adjudication sample size. In our analysis, we adjudicated only 307 of the 4302 total episodes, a 93%


reduction in the number of required adjudications. An important metric that we estimated was the specificity, which in the discordant pair analysis was estimated at 87.5% (95% CI: 83.9%,


92.0%). In our separate validation analysis, we estimated the specificity at 88.9% (95% CI: 86.2%, 91.2%); the point estimates are very close, with the primary difference observed in the


confidence interval limits and the discordant pair analysis results in wider confidence limits owing to the uncertainty characterization in many of the model inputs. We also saw a similar


performance between the two estimates for the sensitivity—the sensitivity estimate from the discordant pair analysis was 99.1% (95% CI: 98.5%, 99.6%) and the sensitivity from the separate


validation analysis was 99.1% (95% CI: 98.2%, 99.7%). With the comparison between the baseline and updated models, we are primarily interested in demonstrating superiority of the updated


model specificity, compared to the baseline model. In the discordant pair analysis, the specificity lower confidence limit of the updated model, 83.9%, is much higher than the baseline


model’s specificity of 72.7%, thus demonstrating superiority. Turning to the simulation study results, for our assumed prevalence of 0.615, a total sample size near 5,000 was optimal for MSE


and CI width. The effect of between-model correlation is beneficial here, we expect a relatively high model correlation, and so the coverage probability is at or near nominal. An additional


benefit of high between-model correlation is the reduction in the number of adjudications needed: we can achieve greater than 90% reduction, a significant time and cost savings. When


specifying the positive-outcome prevalence, a key takeaway is that optimal results are achieved when the value is over specified, but within 10 percentage points of the true underlying


prevalence. Otherwise, the results are sensitive to prevalence values that are under specified. An important and related concept to misspecification of prevalence is the misspecification of


the baseline model sensitivity and/or specificity, which we did not consider directly. This is due in part to the fact that the estimate of the updated model sensitivity or specificity is a


function of both prevalence and baseline model sensitivity or specificity, respectively. There are several limitations associated with this modeling approach. First, the baseline model


assumptions, including sensitivity and specificity, rely on the temporal applicability of the baseline model. That is, data drift and, relatedly, adjudication drift, can be problematic


sources that affect the usefulness of the baseline model, along with any assumptions drawn9. Second, the binary outcome prevalence assumption faces a similar challenge. The underlying


patient population in which the ICMs are prescribed can potentially change over time, changing the prevalence of the binary outcome of interest. Last, the distributional assumptions for


bootstrapping the confidence intervals may require closer examination depending on the application. A key driver of variability is the uncertainty around the prevalence of positive outcomes.


With a prevalence of 0.615, we assumed a beta distribution with rate parameters 100, and 62.6, resulting in 99% of the values falling between 0.54 and 0.710. This spread of potential


prevalence values is very realistic for our application but may need to be loosened or tightened for other applications. A secondary use case for this approach is during active learning,


where the most difficult cases can be identified and examined more closely10. Beyond active learning, there is also a practical perspective, where it is important to only label data the


minimum amount of data necessary to accomplish the task at hand. Extended periods of performing repetitive tasks, including manual adjudications, can result in fatigue and a decrease in the


quality of labels11. To ensure the highest quality of labeling, adjudicators should focus on the most challenging cases for shorter durations. However, it is difficult to determine the


challenging cases a priori, though it is possible for such cases to arise after many hours of adjudication, increasing the likelihood of errors for these edge cases. This is a very important


concept, because in many situations, the difficult edge cases have the highest value in distinguishing between two high-performing models. Therefore, the discordant pair analysis can be


used as part of a strategy to maximize adjudicators’ time by focusing efforts on the challenging cases, resulting in reduced time and effort needed to evaluate a model and produce better


performance results. Finally, an important extension of this approach is to the case where there are multiple cases per patient. We ignored multiple cases per patient purely for illustrative


purposes, but it is important to properly adjust estimates, especially around the construction of confidence intervals. Thus, future work will adapt generalized estimating equations12 or


generalized linear mixed effects models13 to constructing confidence intervals. DATA AVAILABILITY The heart rhythm data were obtained from an internal Medtronic data warehouse, so due to the


sensitive nature of the research supporting data is not available publicly—but will be made available from corresponding author on reasonable request. REFERENCES * Samala, R. K., Chan,


H.-P., Hadjiiski, L. & Koneru, S. Hazards of data leakage in machine learning: A study on classification of breast cancer using deep neural networks. In _Medical Imaging 2020:


Computer-Aided Diagnosis_ (2020). * Gilbert, S. _et al._ Algorithm change protocols in the regulation of adaptive machine learning-based medical devices. _J. Med. Internet Res._ 23, e30545


(2021). Article  PubMed  PubMed Central  Google Scholar  * Bernhardt, M. _et al._ Active label cleaning for improved dataset quality under resource constraints. _Nat. Commun._ 13, 1161


(2022). Article  ADS  CAS  PubMed  PubMed Central  Google Scholar  * Kossen, J., Farquhar, S., Gal, Y. & Rainforth, T. Active testing: Sample-efficient model evaluation. In


_International Conference on Machine Learning_ (2021). * Radtke, A. P., Ousdigian, K. T., Haddad, T. D., Koehler, J. L. & Colombowala, I. K. Artificial intelligence enables dramatic


reduction of false atrial fibrillation alerts from insertable cardiac monitors. _Heart Rhythm_ 18, S47 (2021). Article  Google Scholar  * Bujang, M. A. & Adnan, T. H. Requirements for


minimum sample size for sensitivity and specificity analysis. _J. Clin. Diagn. Res. JCDR_ 10, YE01 (2016). * Chen, W., Petrick, N. A. & Sahiner, B. Hypothesis testing in noninferiority


and equivalence MRMC ROC studies. _Acad. Radiol._ 19, 1158–1165 (2012). Article  PubMed  Google Scholar  * DiCiccio, T. J. & Efron, B. Bootstrap confidence intervals. _Stat. Sci._ 11,


189–228 (1996). Article  MathSciNet  MATH  Google Scholar  * Zenisek, J., Holzinger, F. & Affenzeller, M. Machine learning based concept drift detection for predictive maintenance.


_Comput. Ind. Eng._ 137, 106031 (2019). Article  Google Scholar  * Ren, P. _et al._ A survey of deep active learning. _ACM Comput. Surv. (CSUR)_ 54, 1–40 (2021). Google Scholar  * Yeow, J.


A., Ng, P. K., Tan, K. S., Chin, T. S. & Lim, W. Y. Effects of stress, repetition, fatigue and work environment on human error in manufacturing industries. _J. Appl. Sci._ 14, 3464–3471


(2014). Article  ADS  Google Scholar  * Liang, K.-Y. & Zeger, S. L. Longitudinal data analysis using generalized linear models. _Biometrika_ 73, 13–22 (1986). Article  MathSciNet  MATH 


Google Scholar  * McCulloch, C. E. & Searle, S. R. _Generalized, Linear, and Mixed Models_. (Wiley, 2004). Download references ACKNOWLEDGEMENTS This work was funded by Medtronic Inc. The


authors would also like to thank Karissa King for the expert adjudications used to train and validate the models. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Medtronic Inc., 8200 Coral


Sea St NE, Mounds View, MN, 55112, USA Donald Musgrove, Andrew Radtke & Tarek Haddad Authors * Donald Musgrove View author publications You can also search for this author inPubMed 


Google Scholar * Andrew Radtke View author publications You can also search for this author inPubMed Google Scholar * Tarek Haddad View author publications You can also search for this


author inPubMed Google Scholar CONTRIBUTIONS Method development: T.H., A.R.; simulation and code design and execution: D.M.; acquisition, analysis or interpretation of data and simulation


results: D.M., A.R.; writing of the manuscript: all authors. CORRESPONDING AUTHOR Correspondence to Donald Musgrove. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing


interests. ADDITIONAL INFORMATION PUBLISHER'S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY


INFORMATION SUPPLEMENTARY INFORMATION. RIGHTS AND PERMISSIONS OPEN ACCESS This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,


adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons


licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise


in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the


permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Musgrove, D., Radtke, A. & Haddad, T. Discordant pair analysis for sample efficient model evaluation. _Sci Rep_ 13, 20987 (2023).


https://doi.org/10.1038/s41598-023-48017-4 Download citation * Received: 31 May 2023 * Accepted: 21 November 2023 * Published: 28 November 2023 * DOI:


https://doi.org/10.1038/s41598-023-48017-4 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative