The data science future of neuroscience theory

The data science future of neuroscience theory


Play all audios:

Loading...

An approach for integrating the wealth of heterogeneous brain data — from gene expression and neurotransmitter receptor density to structure and function — allows neuroscientists to easily


place their data within the broader neuroscientific context. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution RELEVANT


ARTICLES Open Access articles citing this article. * NEUROPHYSIOLOGICAL SIGNATURES OF CORTICAL MICRO-ARCHITECTURE * Golia Shafiei * , Ben D. Fulcher *  … Bratislav Misic _Nature


Communications_ Open Access 26 September 2023 ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support REFERENCES * Markello, R. D. et al. _Nat. Methods_ https://doi.org/10.1038/s41592-022-01625-w (2022).


Article  PubMed  Google Scholar  * Fornito, A., Arnatkevičiūtė, A. & Fulcher, B. D. _Trends Cogn. Sci._ 23, 34–50 (2019). Article  PubMed  Google Scholar  * Kopell, N. J., Gritton, H.


J., Whittington, M. A. & Kramer, M. A. _Neuron_ 83, 1319–1328 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jonas, E. & Kording, K. _PLOS Comput. Biol._


https://doi.org/10.1371/journal.pcbi.1005268 (2017). * Churchland, P. S. & Sejnowski, T. J. _Nat. Rev. Neurosci._ 17, 667–668 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Halevy, A., Norvig, P. & Pereira, F. _IEEE Intell. Syst._ 24, 8–12 (2009). Article  Google Scholar  * Beam, E., Potts, C., Poldrack, R. A. & Etkin, A. _Nat. Neurosci._


https://doi.org/10.1038/s41593-021-00948-9 (2021). * Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. _Nat. Methods_ 8, 665–670 (2011). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Voytek, J. B. & Voytek, B. J. _Neurosci. Methods_ 208, 92–100 (2012). Article  Google Scholar  * Voytek, B. _PLOS Comput. Biol._ 12, e1005037 (2016).


Article  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS B.V. is supported by National Institute of General Medical Sciences grant R01GM134363. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Department of Cognitive Science, Halıcıoğlu Data Science Institute, Neurosciences Graduate Program, and Kavli Institute for Brain and Mind, University


of California, San Diego, La Jolla, CA, USA Bradley Voytek Authors * Bradley Voytek View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR


Correspondence to Bradley Voytek. ETHICS DECLARATIONS COMPETING INTERESTS The author declares no competing interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE


THIS ARTICLE Voytek, B. The data science future of neuroscience theory. _Nat Methods_ 19, 1349–1350 (2022). https://doi.org/10.1038/s41592-022-01630-z Download citation * Published: 06


October 2022 * Issue Date: November 2022 * DOI: https://doi.org/10.1038/s41592-022-01630-z SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative