The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis

The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis


Play all audios:

Loading...

ABSTRACT Blood transcriptomics analysis of tuberculosis has revealed an interferon-inducible gene signature that diminishes in expression after successful treatment; this promises improved


diagnostics and treatment monitoring, which are essential for the eradication of tuberculosis. Sensitive radiography revealing lung abnormalities and blood transcriptomics have demonstrated


heterogeneity in patients with active tuberculosis and exposed asymptomatic people with latent tuberculosis, suggestive of a continuum of infection and immune states. Here we describe the


immune response to infection with _Mycobacterium tuberculosis_ revealed through the use of transcriptomics, as well as differences among clinical phenotypes of infection that might provide


information on temporal changes in host immunity associated with evolving infection. We also review the diverse blood transcriptional signatures, composed of small sets of genes, that have


been proposed for the diagnosis of tuberculosis and the identification of at-risk asymptomatic people and suggest novel approaches for the development of such biomarkers for clinical use.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54


other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and


online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes


which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY


OTHERS COMPARATIVE TRANSCRIPTOMIC ANALYSIS OF WHOLE BLOOD MYCOBACTERIAL GROWTH ASSAYS AND TUBERCULOSIS PATIENTS’ BLOOD RNA PROFILES Article Open access 21 October 2022 IDENTIFICATION OF


IMMUNE BIOMARKERS IN RECENT ACTIVE PULMONARY TUBERCULOSIS Article Open access 17 July 2023 IDENTIFICATION OF IMMUNE PHENOTYPES AND DIAGNOSTIC BIOMARKERS IN ACTIVE AND LATENT TUBERCULOSIS


INFECTIONS Article Open access 29 April 2025 REFERENCES * World Health Organization. _Global Tuberculosis Report_ (World Health Organization, 2017). * O’Garra, A. et al. The immune response


in tuberculosis. _Annu. Rev. Immunol._ 31, 475–527 (2013). Article  PubMed  Google Scholar  * Pai, M. et al. Tuberculosis. _Nat. Rev. Dis. Primers._ 2, 16076 (2016). Article  PubMed  Google


Scholar  * Davies, P. D. & Pai, M. The diagnosis and misdiagnosis of tuberculosis. _Int. J. Tuberc. Lung Dis._ 12, 1226–1234 (2008). CAS  PubMed  Google Scholar  * Pfyffer, G. E.,


Cieslak, C., Welscher, H. M., Kissling, P. & Rüsch-Gerdes, S. Rapid detection of mycobacteria in clinical specimens by using the automated BACTEC 9000 MB system and comparison with


radiometric and solid-culture systems. _J. Clin. Microbiol._ 35, 2229–2234 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Behr, M. A., Edelstein, P. H. & Ramakrishnan, L.


Revisiting the timetable of tuberculosis. _Br. Med. J._ 362, k2738 (2018). * Trajman, A., Steffen, R. E. & Menzies, D. Interferon-γ release assays versus tuberculin skin testing for the


diagnosis of latent tuberculosis infection: an overview of the evidence. _Pulm. Med._ 2013, 601737 (2013). CAS  PubMed  PubMed Central  Google Scholar  * Barry, C. E. III et al. The spectrum


of latent tuberculosis: rethinking the biology and intervention strategies. _Nat. Rev. Microbiol._ 7, 845–855 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Esmail, H. et


al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-d-glucose positron emission and computed tomography. _Nat. Med._ 22, 1090–1093 (2016). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Dowdy, D. W., Basu, S. & Andrews, J. R. Is passive diagnosis enough? The impact of subclinical disease on diagnostic strategies for


tuberculosis. _Am. J. Respir. Crit. Care Med._ 187, 543–551 (2013). Article  PubMed  PubMed Central  Google Scholar  * Orme, I. M., Robinson, R. T. & Cooper, A. M. The balance between


protective and pathogenic immune responses in the TB-infected lung. _Nat. Immunol._ 16, 57–63 (2015). Article  CAS  PubMed  Google Scholar  * Cooper, A. M. Cell-mediated immune responses in


tuberculosis. _Annu. Rev. Immunol._ 27, 393–422 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cooper, A. M., Mayer-Barber, K. D. & Sher, A. Role of innate cytokines in


mycobacterial infection. _Mucosal Immunol._ 4, 252–260 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Flynn, J. L. & Chan, J. Immunology of tuberculosis. _Annu. Rev.


Immunol._ 19, 93–129 (2001). Article  CAS  PubMed  Google Scholar  * Casanova, J. L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. _Annu. Rev. Immunol._ 20,


581–620 (2002). Article  CAS  PubMed  Google Scholar  * Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. _N. Engl. J. Med._ 345,


1098–1104 (2001). Article  CAS  PubMed  Google Scholar  * Esmail, H. et al. The immune response to _Mycobacterium tuberculosis_ in HIV-1-coinfected persons. _Annu. Rev. Immunol._ 36, 603–638


(2018). Article  CAS  PubMed  Google Scholar  * Lin, P. L. et al. PET CT identifies reactivation risk in cynomolgus macaques with latent _M. tuberculosis_. _PLoS Pathog._ 12, e1005739


(2016). Article  PubMed  PubMed Central  Google Scholar  * Martineau, A. R. Old wine in new bottles: vitamin D in the treatment and prevention of tuberculosis. _Proc. Nutr. Soc._ 71, 84–89


(2012). Article  CAS  PubMed  Google Scholar  * Dye, C. After 2015: infectious diseases in a new era of health and development. _Phil. Trans. R. Soc. Lond. B_ 369, 20130426 (2014). Article 


Google Scholar  * Llewelyn, M., Cropley, I., Wilkinson, R. J. & Davidson, R. N. Tuberculosis diagnosed during pregnancy: a prospective study from London. _Thorax_ 55, 129–132 (2000).


Article  CAS  PubMed  PubMed Central  Google Scholar  * McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. _Nat. Rev. Immunol._ 15,


87–103 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Redford, P. S. et al. Influenza A virus impairs control of _Mycobacterium tuberculosis_ coinfection through a type I


interferon receptor-dependent pathway. _J. Infect. Dis._ 209, 270–274 (2014). Article  CAS  PubMed  Google Scholar  * Berry, M. P. et al. An interferon-inducible neutrophil-driven blood


transcriptional signature in human tuberculosis. _Nature_ 466, 973–977 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bloom, C. I. et al. Detectable changes in the blood


transcriptome are present after two weeks of antituberculosis therapy. _PLoS One_ 7, e46191 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Maertzdorf, J. et al. Human gene


expression profiles of susceptibility and resistance in tuberculosis. _Genes Immun._ 12, 15–22 (2011). Article  CAS  PubMed  Google Scholar  * Maertzdorf, J. et al. Functional correlations


of pathogenesis-driven gene expression signatures in tuberculosis. _PLoS One_ 6, e26938 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Maertzdorf, J. et al. Common patterns


and disease-related signatures in tuberculosis and sarcoidosis. _Proc. Natl. Acad. Sci. USA_ 109, 7853–7858 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ottenhoff, T. H.


et al. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. _PLoS One_ 7, e45839 (2012). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Bloom, C. I. et al. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers. _PLoS One_ 8, e70630 (2013). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Cliff, J. M. et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune


response. _J. Infect. Dis._ 207, 18–29 (2013). Article  CAS  PubMed  Google Scholar  * Berry, M. P., Blankley, S., Graham, C. M., Bloom, C. I. & O’Garra, A. Systems approaches to


studying the immune response in tuberculosis. _Curr. Opin. Immunol._ 25, 579–587 (2013). Article  CAS  PubMed  Google Scholar  * Blankley, S. et al. The transcriptional signature of active


tuberculosis reflects symptom status in extra-pulmonary and pulmonary tuberculosis. _PLoS One_ 11, e0162220 (2016). Article  PubMed  PubMed Central  Google Scholar  * Roe, J. K. et al. Blood


transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis. _JCI Insight_ 1, e87238 (2016). Article  PubMed  PubMed Central  Google Scholar  * Scriba, T. J. et al. Sequential


inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease. _PLoS Pathog._ 13, e1006687 (2017). Article  PubMed  PubMed Central  Google Scholar  *


Joosten, S. A., Fletcher, H. A. & Ottenhoff, T. H. A helicopter perspective on TB biomarkers: pathway and process based analysis of gene expression data provides new insight into TB


pathogenesis. _PLoS One_ 8, e73230 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Blankley, S. et al. A 380-gene meta-signature of active tuberculosis compared with healthy


controls. _Eur. Respir. J._ 47, 1873–1876 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sambarey, A. et al. Meta-analysis of host response networks identifies a _common


core_ in tuberculosis. _NPJ Syst. Biol. Appl._ 3, 4 (2017). Article  PubMed  PubMed Central  Google Scholar  * Singhania, A. et al. A modular transcriptional signature identifies phenotypic


heterogeneity of human tuberculosis infection. _Nat. Commun._ 9, 2308 (2018). Article  PubMed  PubMed Central  Google Scholar  * Dorhoi, A. et al. Type I IFN signaling triggers


immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. _Eur. J. Immunol._ 44, 2380–2393 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Manca, C. et al. Virulence of a _Mycobacterium tuberculosi_s clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. _Proc.


Natl. Acad. Sci. USA_ 98, 5752–5757 (2001). Article  CAS  Google Scholar  * Manca, C. et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression


of negative regulators of the Jak-Stat pathway. _J. Interferon Cytokine Res._ 25, 694–701 (2005). Article  CAS  Google Scholar  * Mayer-Barber, K. D. et al. Host-directed therapy of


tuberculosis based on interleukin-1 and type I interferon crosstalk. _Nature_ 511, 99–103 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * McNab, F. W. et al. TPL-2-ERK1/2


signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. _J. Immunol._ 191, 1732–1743 (2013). Article  CAS  PubMed 


Google Scholar  * Moreira-Teixeira, L., Mayer-Barber, K., Sher, A. & O’Garra, A. Type I interferons in tuberculosis: foe and occasionally friend. _J. Exp. Med._ 215, 1273–1285 (2018).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ordway, D. et al. The hypervirulent _Mycobacterium tuberculosis_ strain HN878 induces a potent TH1 response followed by rapid


down-regulation. _J. Immunol._ 179, 522–531 (2007). Article  CAS  PubMed  Google Scholar  * Gideon, H. P., Skinner, J. A., Baldwin, N., Flynn, J. L. & Lin, P. L. Early whole blood


transcriptional signatures are associated with severity of lung inflammation in cynomolgus macaques with _Mycobacterium tuberculosis_ infection. _J. Immunol._ 197, 4817–4828 (2016). Article


  CAS  PubMed  Google Scholar  * Carmona, J. et al. _Mycobacterium tuberculosis_ strains are differentially recognized by TLRs with an impact on the immune response. _PLoS One_ 8, e67277


(2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Collins, A. C. et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for _Mycobacterium tuberculosis_. _Cell Host


Microbe_ 17, 820–828 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wassermann, R. et al. _Mycobacterium tuberculosis_ differentially activates cGAS- and


inflammasome-dependent intracellular immune responses through ESX-1. _Cell Host Microbe_ 17, 799–810 (2015). Article  CAS  PubMed  Google Scholar  * Watson, R. O. et al. The cytosolic sensor


cGAS detects _Mycobacterium tuberculosis_ DNA to induce type I interferons and activate autophagy. _Cell Host Microbe_ 17, 811–819 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wiens, K. E. & Ernst, J. D. The mechanism for type I interferon induction by _Mycobacterium tuberculosis_ is bacterial strain-dependent. _PLoS Pathog._ 12, e1005809 (2016).


Article  PubMed  PubMed Central  Google Scholar  * McNab, F. W. et al. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of


IL-12 and bacterial killing in _Mycobacterium tuberculosis_-infected macrophages. _J. Immunol._ 193, 3600–3612 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * Antonelli, L.


R. et al. Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. _J. Clin. Invest._ 120,


1674–1682 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Domaszewska, T. et al. Concordant and discordant gene expression patterns in mouse strains identify best-fit animal


model for human tuberculosis. _Sci. Rep._ 7, 12094 (2017). Article  PubMed  PubMed Central  Google Scholar  * Namasivayam, S. et al. Longitudinal profiling reveals a persistent intestinal


dysbiosis triggered by conventional anti-tuberculosis therapy. _Microbiome_ 5, 71 (2017). Article  PubMed  PubMed Central  Google Scholar  * Wipperman, M. F. et al. Antibiotic treatment for


Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. _Sci. Rep._ 7, 10767 (2017). Article  PubMed  PubMed Central  Google Scholar  *


Zhang, G. et al. A proline deletion in IFNAR1 impairs IFN-signaling and underlies increased resistance to tuberculosis in humans. _Nat. Commun._ 9, 85 (2018). Article  PubMed  PubMed Central


  Google Scholar  * Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. _Nature_ 517, 89–93 (2015). Article  CAS  PubMed  Google


Scholar  * Bogunovic, D. et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. _Science_ 337, 1684–1688 (2012). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Chen, D. Y. et al. Single-chain antibody against human lipocalin-type prostaglandin D synthase: construction, expression, purification, and activity assay.


_Biochemistry_ 73, 702–710 (2008). CAS  PubMed  Google Scholar  * Divangahi, M., King, I. L. & Pernet, E. Alveolar macrophages and type I IFN in airway homeostasis and immunity. _Trends


Immunol._ 36, 307–314 (2015). Article  CAS  PubMed  Google Scholar  * Moreira-Teixeira, L. et al. T cell-derived IL-10 impairs host resistance to _Mycobacterium tuberculosis_ infection. _J.


Immunol._ 199, 613–623 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Beamer, G. L. et al. Interleukin-10 promotes _Mycobacterium tuberculosis_ disease progression in CBA/J


mice. _J. Immunol._ 181, 5545–5550 (2008). Article  CAS  PubMed  Google Scholar  * Redford, P. S., Murray, P. J. & O’Garra, A. The role of IL-10 in immune regulation during _M.


tuberculosis_ infection. _Mucosal Immunol._ 4, 261–270 (2011). Article  CAS  PubMed  Google Scholar  * Huynh, J. P. et al. Bhlhe40 is an essential repressor of IL-10 during _Mycobacterium


tuberculosis_ infection. _J. Exp. Med._ 215, 1823–1838 (2018). PubMed  PubMed Central  Google Scholar  * Furie, R. et al. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in


moderate-to-severe systemic lupus erythematosus. _Arthritis Rheumatol._ 69, 376–386 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Moreira-Teixeira, L. et al. Type I IFN


inhibits alternative macrophage activation during _Mycobacterium tuberculosis_ infection and leads to enhanced protection in the absence of IFN-γ signaling. _J. Immunol._ 197, 4714–4726


(2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ward, C. M. et al. Adjunctive treatment of disseminated _Mycobacterium avium_ complex infection with interferon α-2b in a


patient with complete interferon-γ receptor R1 deficiency. _Eur. J. Pediatr._ 166, 981–985 (2007). Article  CAS  PubMed  Google Scholar  * Lin, P. L. et al. Quantitative comparison of active


and latent tuberculosis in the cynomolgus macaque model. _Infect. Immun._ 77, 4631–4642 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cadena, A. M., Fortune, S. M. &


Flynn, J. L. Heterogeneity in tuberculosis. _Nat. Rev. Immunol._ 17, 691–702 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Capuano, S. V. III et al. Experimental


_Mycobacterium tuberculosis_ infection of cynomolgus macaques closely resembles the various manifestations of human _M. tuberculosis_ infection. _Infect. Immun._ 71, 5831–5844 (2003).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Esmail, H. et al. Complement pathway gene activation and rising circulating immune complexes characterize early disease in


HIV-associated tuberculosis. _Proc. Natl. Acad. Sci. USA_ 115, E964–E973 (2018). Article  PubMed  PubMed Central  Google Scholar  * Zak, D. E. et al. A blood RNA signature for tuberculosis


disease risk: a prospective cohort study. _Lancet_ 387, 2312–2322 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Charalambous, S. et al. Contribution of reinfection to


recurrent tuberculosis in South African gold miners. _Int. J. Tuberc. Lung Dis._ 12, 942–948 (2008). CAS  PubMed  Google Scholar  * Uys, P. et al. The risk of tuberculosis reinfection soon


after cure of a first disease episode is extremely high in a hyperendemic community. _PLoS One_ 10, e0144487 (2015). Article  PubMed  PubMed Central  Google Scholar  * van Helden, P. D.,


Warren, R. M. & Uys, P. Predicting reinfection in tuberculosis. _J. Infect. Dis._ 197, 172–173 (2008). * van Rie, A. et al. Reinfection and mixed infection cause changing _Mycobacterium


tuberculosis_ drug-resistance patterns. _Am. J. Respir. Crit. Care Med._ 172, 636–642 (2005). Article  PubMed  PubMed Central  Google Scholar  * van Rie, A. et al. Exogenous reinfection as a


cause of recurrent tuberculosis after curative treatment. _N. Engl. J. Med._ 341, 1174–1179 (1999). Article  PubMed  Google Scholar  * van Rie, A. et al. Transmission of a


multidrug-resistant _Mycobacterium tuberculosis_ strain resembling “strain W” among noninstitutionalized, human immunodeficiency virus-seronegative patients. _J. Infect. Dis._ 180, 1608–1615


(1999). Article  PubMed  Google Scholar  * Verver, S. et al. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. _Am. J. Respir. Crit. Care


Med._ 171, 1430–1435 (2005). Article  PubMed  Google Scholar  * Warren, R. M. et al. Patients with active tuberculosis often have different strains in the same sputum specimen. _Am. J.


Respir. Crit. Care Med._ 169, 610–614 (2004). Article  PubMed  Google Scholar  * Diel, R., Loddenkemper, R. & Nienhaus, A. Evidence-based comparison of commercial interferon-γ release


assays for detecting active TB: a metaanalysis. _Chest_ 137, 952–968 (2010). Article  CAS  PubMed  Google Scholar  * Elkington, P., Tebruegge, M. & Mansour, S. Tuberculosis: an


infection-initiated autoimmune disease? _Trends Immunol._ 37, 815–818 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Clayton, K., Polak, M. E., Woelk, C. H. & Elkington,


P. Gene expression signatures in tuberculosis have greater overlap with autoimmune diseases than with infectious diseases. _Am. J. Respir. Crit. Care Med._ 196, 655–656 (2017). Article 


PubMed  PubMed Central  Google Scholar  * Mourik, B. C., Lubberts, E., de Steenwinkel, J. E. M., Ottenhoff, T. H. M. & Leenen, P. J. M. Interactions between type 1 interferons and the


Th17 response in tuberculosis: lessons learned from autoimmune diseases. _Front. Immunol._ 8, 294 (2017). * Koth, L. L. et al. Sarcoidosis blood transcriptome reflects lung inflammation and


overlaps with tuberculosis. _Am. J. Respir. Crit. Care Med._ 184, 1153–1163 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kaforou, M. et al. Detection of tuberculosis in


HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. _PLoS Med._ 10, e1001538 (2013). Article  PubMed  PubMed Central  Google


Scholar  * Anderson, S. T. et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. _N. Engl. J. Med._ 370, 1712–1723 (2014). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Maertzdorf, J. et al. Concise gene signature for point-of-care classification of tuberculosis. _EMBO Mol. Med._ 8, 86–95 (2016). Article  CAS  PubMed  Google Scholar  *


Sweeney, T. E., Braviak, L., Tato, C. M. & Khatri, P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. _Lancet Respir. Med._ 4, 213–224 (2016).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Leong, S. et al. Existing blood transcriptional classifiers accurately discriminate active tuberculosis from latent infection in


individuals from south India. _Tuberculosis_ 109, 41–51 (2018). Article  PubMed  Google Scholar  * Pan, L. et al. Genome-wide transcriptional profiling identifies potential signatures in


discriminating active tuberculosis from latent infection. _Oncotarget_ 8, 112907–112916 (2017). PubMed  PubMed Central  Google Scholar  * Walter, N. D. et al. Blood transcriptional


biomarkers for active tuberculosis among patients in the United States: a case-control study with systematic cross-classifier evaluation. _J. Clin. Microbiol._ 54, 274–282 (2016). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Walter, N. D., Reves, R. & Davis, J. L. Blood transcriptional signatures for tuberculosis diagnosis: a glass half-empty perspective.


_Lancet Respir. Med._ 4, e28 (2016). Article  PubMed  Google Scholar  * Cox, H. et al. Delays and loss to follow-up before treatment of drug-resistant tuberculosis following implementation


of Xpert MTB/RIF in South Africa: a retrospective cohort study. _PLoS Med._ 14, e1002238 (2017). Article  PubMed  PubMed Central  Google Scholar  * Cox, H. S. et al. The need to accelerate


access to new drugs for multidrug-resistant tuberculosis. _Bull. World Health Organ._ 93, 491–497 (2015). Article  PubMed  PubMed Central  Google Scholar  * Bang, N. D. et al. Clinical


presentations, diagnosis, mortality and prognostic markers of tuberculous meningitis in Vietnamese children: a prospective descriptive study. _BMC Infect. Dis._ 16, 573 (2016). Article 


PubMed  PubMed Central  Google Scholar  * Suliman, S. et al. Four-gene pan-African blood signature predicts progression to tuberculosis. _Am. J. Respir. Crit. Care Med_. (2018). * Cliff, J.


M., Kaufmann, S. H., McShane, H., van Helden, P. & O’Garra, A. The human immune response to tuberculosis and its treatment: a view from the blood. _Immunol. Rev._ 264, 88–102 (2015).


Article  CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS A.S., R.J.W. and A.O.G. were funded by The Francis Crick Institute (Crick 10126 and Crick 10468 for


A.O.G. and A.S., and Crick 10128 for R.J.W.), which receives its core funding from Cancer Research UK, the UK Medical Research Council and the Wellcome Trust. R.J.W. was supported by the


Wellcome Trust (104803 and 203135); MRC South Africa under strategic health innovation partnerships EDCTP SR1A 2015-1065 and the US National Institutes of Health (019 AI 111276 and


UO1AI115940). P.H. was supported by NIHR Leicester Biomedical Research Centre and the University of Leicester. M.R. was supported by Medical Diagnostic Discovery Department, bioMérieux SA,


Marcy l’Etoile, France. The views expressed are those of the author(s) and not necessarily those of the NHS the NIHR or the Department of Health. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS


* Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK Akul Singhania & Anne O’Garra * Laboratory of Tuberculosis, The Francis Crick Institute, London,


UK Robert J. Wilkinson * Department of Medicine, Imperial College London, London, UK Robert J. Wilkinson * Wellcome Centre for Infectious Diseases Research in Africa, University of Cape


Town, Observatory, 7925, Cape Town, Republic of South Africa Robert J. Wilkinson * Medical Diagnostic Discovery Department, bioMerieux SA, Marcy l’Etoile, France Marc Rodrigue * Respiratory


Biomedical Research Centre, Institute for Lung Health, Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK Pranabashis Haldar * National Heart and Lung


Institute, Imperial College London, London, UK Anne O’Garra Authors * Akul Singhania View author publications You can also search for this author inPubMed Google Scholar * Robert J.


Wilkinson View author publications You can also search for this author inPubMed Google Scholar * Marc Rodrigue View author publications You can also search for this author inPubMed Google


Scholar * Pranabashis Haldar View author publications You can also search for this author inPubMed Google Scholar * Anne O’Garra View author publications You can also search for this author


inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Anne O’Garra. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. Patents previously held by


A.O.G. on the use of the blood transcriptome for the diagnosis of tuberculosis have lapsed and have been discontinued. M.R. is an employee of BioMérieux, which has not filed patents related


to this study. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY


INFORMATION SUPPLEMENTARY TABLE RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Singhania, A., Wilkinson, R.J., Rodrigue, M. _et al._ The value of


transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis. _Nat Immunol_ 19, 1159–1168 (2018). https://doi.org/10.1038/s41590-018-0225-9 Download citation *


Received: 29 May 2018 * Accepted: 28 August 2018 * Published: 17 October 2018 * Issue Date: November 2018 * DOI: https://doi.org/10.1038/s41590-018-0225-9 SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative