Back to the future: targeting the extracellular matrix to treat systemic sclerosis

Back to the future: targeting the extracellular matrix to treat systemic sclerosis


Play all audios:

Loading...

ABSTRACT Fibrosis is the excessive deposition of a stable extracellular matrix (ECM); fibrotic tissue is composed principally of highly crosslinked type I collagen and highly contractile


myofibroblasts. Systemic sclerosis (SSc) is a multisystem autoimmune connective tissue disease characterized by skin and organ fibrosis. The fibrotic process has been recognized in SSc for


>40 years, but drugs with demonstrable efficacy against SSc fibrosis in ameliorating the lung involvement have only recently been identified. Unfortunately, these treatments are


ineffective at improving the skin score in patients with SSc. Previous clinical trials in SSc have largely focused on the cross-purposing of anti-inflammatory drugs and the use of


immunosuppressive drugs from the transplantation field, which address inflammatory and/or autoimmune processes. Limited examination has taken place of specific anti-fibrotic agents developed


through their ability to directly target the ECM in SSc by, for example, alleviating the persistent matrix stiffness and mechanotransduction that might be required for both the initiation


and maintenance of fibrosis, including in SSc. However, because of the importance of the ECM in the SSc phenotype, attempts have now been made to identify drugs that specifically target the


ECM, including some drugs that are currently under consideration for the treatment of cancer. KEY POINTS * Systemic sclerosis (SSc) is a fibrotic disease, and anti-fibrotic agents deserve


consideration as treatments for this disease. * Major efforts have been made in the past ~20–25 years to uncover common mechanisms underlying fibrotic disease, including mechanotransductive


pathways and enzymes that directly affect extracellular matrix stiffness. * Potential SSc targets include collagen prolyl 4-hydroxylase, lysyl oxidase, focal adhesion kinase, TGFβ-activating


integrin subunits, TGFβ-activated kinase 1, yes-associated protein 1, myocardin-related transcription factor A and cellular communication network factors. * Current efforts are focused on


understanding how fibroblast subsets respond excessively to inflammation in fibrosis. Access through your institution Buy or subscribe This is a preview of subscription content, access via


your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days


cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IMMUNE CELL DYSREGULATION AS A MEDIATOR OF FIBROSIS IN SYSTEMIC SCLEROSIS Article 09 November


2022 SSC-ILD MOUSE MODEL INDUCED BY OSMOTIC MINIPUMP DELIVERED BLEOMYCIN: EFFECT OF NINTEDANIB Article Open access 16 September 2021 MESENCHYMAL STEM CELLS ALLEVIATE SYSTEMIC SCLEROSIS BY


INHIBITING THE RECRUITMENT OF PATHOGENIC MACROPHAGES Article Open access 26 November 2022 REFERENCES * Herrick, A. L., Assassi, S. & Denton, C. P. Skin involvement in early diffuse


cutaneous systemic sclerosis: an unmet clinical need. _Nat. Rev. Rheumatol._ 18, 276–285 (2022). Article  PubMed  PubMed Central  Google Scholar  * Jiang, Y., Turk, M. A. & Pope, J. E.


Factors associated with pulmonary arterial hypertension (PAH) in systemic sclerosis (SSc). _Autoimmun. Rev._ 19, 102602 (2020). Article  CAS  PubMed  Google Scholar  * Attanasio, U. et al.


Pulmonary hypertension phenotypes in systemic sclerosis: the right diagnosis for the right treatment. _Int. J. Mol. Sci._ 21, 4430 (2020). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Siqueira, V. S. et al. Predictors of progression to systemic sclerosis: analysis of very early diagnosis of systemic sclerosis in a large single-centre cohort. _Rheumatology_ 61,


3686–3692 (2022). Article  CAS  PubMed  Google Scholar  * Domsic, R. T. et al. Defining the optimal disease duration of early diffuse systemic sclerosis for clinical trial design.


_Rheumatology_ 60, 4662–4670 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Higley, H. et al. Immunocytochemical localization and serologic detection of transforming growth


factor β1. Association with type I procollagen and inflammatory cell markers in diffuse and limited systemic sclerosis, morphea, and Raynaud’s phenomenon. _Arthritis Rheum._ 37, 278–288


(1994). Article  CAS  PubMed  Google Scholar  * Tsou, P. S., Shi, B. & Varga, J. Role of cellular senescence in the pathogenesis of systemic sclerosis. _Curr. Opin. Rheumatol._ 34,


343–350 (2022). Article  CAS  PubMed  Google Scholar  * Lescoat, A., Lecureur, V. & Varga, J. Contribution of monocytes and macrophages to the pathogenesis of systemic sclerosis: recent


insights and therapeutic implications. _Curr. Opin. Rheumatol._ 33, 463–470 (2021). Article  CAS  PubMed  Google Scholar  * Tsou, P. S., Varga, J. & O’Reilly, S. Advances in epigenetics


in systemic sclerosis: molecular mechanisms and therapeutic potential. _Nat. Rev. Rheumatol._ 17, 596–607 (2021). Article  PubMed  Google Scholar  * Shah, S. & Denton, C. P. Scleroderma


autoantibodies in guiding monitoring and treatment decisions. _Curr. Opin. Rheumatol._ 34, 302–310 (2022). Article  CAS  PubMed  Google Scholar  * Lescoat, A., Varga, J., Matucci-Cerinic, M.


& Khanna, D. New promising drugs for the treatment of systemic sclerosis: pathogenic considerations, enhanced classifications, and personalized medicine. _Expert. Opin. Investig. Drugs_


30, 635–652 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Distler, O. et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. _N. Engl. J. Med._


380, 2518–2528 (2019). Article  CAS  PubMed  Google Scholar  * Haynes, D. C. & Gershwin, M. E. The immunopathology of progressive systemic sclerosis (PSS). _Semin. Arthritis Rheum._ 11,


331–351 (1982). Article  CAS  PubMed  Google Scholar  * Sappino, A. P., Masouyé, I., Saurat, J. H. & Gabbiani, G. Smooth muscle differentiation in scleroderma fibroblastic cells. _Am. J.


Pathol._ 137, 585–591 (1990). CAS  PubMed  PubMed Central  Google Scholar  * Kirk, T. Z., Mark, M. E., Chua, C. C., Chua, B. H. & Mayes, M. D. Myofibroblasts from scleroderma skin


synthesize elevated levels of collagen and tissue inhibitor of metalloproteinase (TIMP-1) with two forms of TIMP-1. _J. Biol. Chem._ 270, 3423–3428 (1995). Article  CAS  PubMed  Google


Scholar  * Krieg, T., Perlish, J. S., Mauch, C. & Fleischmajer, R. Collagen synthesis by scleroderma fibroblasts. _Ann. N. Y. Acad. Sci._ 460, 375–386 (1985). Article  CAS  PubMed 


Google Scholar  * LeRoy, E. C. The pathogenesis of systemic sclerosis. _Clin. Exp. Rheumatol._ 7, S135–S137 (1989). PubMed  Google Scholar  * Mauch, C. & Kreig, T. Fibroblast-matrix


interactions and their role in the pathogenesis of fibrosis. _Rheum. Dis. Clin. North. Am._ 16, 93–107 (1990). Article  CAS  PubMed  Google Scholar  * van der Slot, A. J. et al.


Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. _J. Biol. Chem._ 278, 40967–40972 (2003). Article  PubMed  Google Scholar  * Ivarsson, M.,


McWhirter, A., Black, C. M. & Rubin, K. Impaired regulation of collagen pro-α1(I) mRNA and change in pattern of collagen-binding integrins on scleroderma fibroblasts. _J. Invest.


Dermatol._ 101, 216–221 (1993). Article  CAS  PubMed  Google Scholar  * Bou-Gharios, G., Osman, J., Black, C. & Olsen, I. Excess matrix accumulation in scleroderma is caused partly by


differential regulation of stromelysin and TIMP-1 synthesis. _Clin. Chim. Acta_ 231, 69–78 (1994). Article  CAS  PubMed  Google Scholar  * Wakhlu, A. et al. Assessment of extent of skin


involvement in scleroderma using shear wave elastography. _Indian. J. Rheumatol._ 12, 194–198 (2017). Article  Google Scholar  * Aden, N. et al. Proteomic analysis of scleroderma lesional


skin reveals activated wound healing phenotype of epidermal cell layer. _Rheumatology_ 47, 1754–1760 (2008). Article  CAS  PubMed  Google Scholar  * Allanore, Y. et al. Correlation of serum


collagen I carboxyterminal telopeptide concentrations with cutaneous and pulmonary involvement in systemic sclerosis. _J. Rheumatol._ 30, 68–73 (2003). CAS  PubMed  Google Scholar  * Lurje,


I., Gaisa, N. T., Weiskirchen, R. & Tacke, F. Mechanisms of organ fibrosis: emerging concepts and implications for novel treatment strategies. _Mol. Asp. Med._ 92, 101191 (2023). Article


  CAS  Google Scholar  * Brown, M. & O’Reilly, S. The immunopathogenesis of fibrosis in systemic sclerosis. _Clin. Exp. Immunol._ 195, 310–321 (2019). Article  CAS  PubMed  Google


Scholar  * van Bon, L., Cossu, M. & Radstake, T. R. An update on an immune system that goes awry in systemic sclerosis. _Curr. Opin. Rheumatol._ 23, 505–510 (2011). Article  PubMed 


Google Scholar  * Wei, L., Abraham, D. & Ong, V. The Yin and Yang of IL-17 in systemic sclerosis. _Front. Immunol._ 13, 885609 (2022). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Worrell, J. C. & O’Reilly, S. Bi-directional communication: conversations between fibroblasts and immune cells in systemic sclerosis. _J. Autoimmun._ 113, 102526 (2020).


Article  CAS  PubMed  Google Scholar  * Li, G. et al. Skin-resident effector memory CD8+CD28− T cells exhibit a profibrotic phenotype in patients with systemic sclerosis. _J. Invest.


Dermatol._ 137, 1042–1050 (2017). Article  CAS  PubMed  Google Scholar  * Yaseen, B. et al. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma.


_Rheumatology_ 59, 2625–2636 (2020). Article  CAS  PubMed  Google Scholar  * Makhluf, H. A. et al. IL-4 upregulates tenascin synthesis in scleroderma and healthy skin fibroblasts. _J.


Invest. Dermatol._ 107, 856–859 (1996). Article  CAS  PubMed  Google Scholar  * Matsushita, T. et al. BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and


effector B cell balance. _Sci. Adv._ 4, eaas9944 (2018). Article  PubMed  PubMed Central  Google Scholar  * François, A. et al. B lymphocytes and B-cell activating factor promote collagen


and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. _Arthritis Res. Ther._ 15, R168 (2013). Article  PubMed  PubMed Central  Google Scholar  * Matsushita, T. et


al. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. _Arthritis Rheum._ 54, 192–201 (2006). Article  CAS  PubMed 


Google Scholar  * van der Kroef, M. et al. CXCL4 triggers monocytes and macrophages to produce PDGF-BB, culminating in fibroblast activation: implications for systemic sclerosis. _J.


Autoimmun._ 111, 102444 (2020). Article  PubMed  Google Scholar  * Binai, N., O’Reilly, S., Griffiths, B., van Laar, J. M. & Hügle, T. Differentiation potential of CD14+ monocytes into


myofibroblasts in patients with systemic sclerosis. _PLoS ONE_ 7, e33508 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Herrick, A. L. et al. Treatment outcome in early


diffuse cutaneous systemic sclerosis: the European Scleroderma Observational Study (ESOS). _Ann. Rheum. Dis._ 76, 1207–1218 (2017). Article  CAS  PubMed  Google Scholar  * Namas, R. et al.


Efficacy of mycophenolate mofetil and oral cyclophosphamide on skin thickness: post hoc analyses from two randomized placebo-controlled trials. _Arthritis Care Res._ 70, 439–444 (2018).


Article  CAS  Google Scholar  * Pakshir, P. et al. The myofibroblast at a glance. _J. Cell Sci._ 133, jcs227900 (2020). Article  CAS  PubMed  Google Scholar  * Liu, S. et al. Role of Rac1 in


a bleomycin-induced scleroderma model using fibroblast-specific Rac1-knockout mice. _Arthritis Rheum._ 58, 2189–2195 (2008). Article  CAS  PubMed  Google Scholar  * Liu, S., Shi-wen, X.,


Abraham, D. J. & Leask, A. CCN2 is required for bleomycin-induced skin fibrosis in mice. _Arthritis Rheum._ 63, 239–246 (2011). Article  CAS  PubMed  Google Scholar  * Tsang, M. et al.


Insights into fibroblast plasticity: cellular communication network 2 is required for activation of cancer-associated fibroblasts in a murine model of melanoma. _Am. J. Pathol._ 190, 206–221


(2020). Article  CAS  PubMed  Google Scholar  * Chen, Y. et al. Matrix contraction by dermal fibroblasts requires transforming growth factor-β/activin-linked kinase 5, heparan


sulfate-containing proteoglycans, and MEK/ERK: insights into pathological scarring in chronic fibrotic disease. _Am. J. Pathol._ 167, 1699–1711 (2005). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Rajkumar, V. S. et al. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in


fibrosis. _Arthritis Res. Ther._ 7, R1113–R1123 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rajkumar, V. S., Sundberg, C., Abraham, D. J., Rubin, K. & Black, C. M.


Activation of microvascular pericytes in autoimmune Raynaud’s phenomenon and systemic sclerosis. _Arthritis Rheum._ 42, 930–941 (1999). Article  CAS  PubMed  Google Scholar  * Young-Min, S.


A. et al. Serum TIMP-1, TIMP-2, and MMP-1 in patients with systemic sclerosis, primary Raynaud’s phenomenon, and in normal controls. _Ann. Rheum. Dis._ 60, 846–851 (2001). CAS  PubMed 


PubMed Central  Google Scholar  * Xu, S. et al. Endothelins: effect on matrix biosynthesis and proliferation in normal and scleroderma fibroblasts. _J. Cardiovasc. Pharmacol._ 31, S360–S363


(1998). Article  CAS  PubMed  Google Scholar  * Chanoki, M. et al. Increased expression of lysyl oxidase in skin with scleroderma. _Br. J. Dermatol._ 133, 710–715 (1995). Article  CAS 


PubMed  Google Scholar  * Rimar, D. et al. Brief report: lysyl oxidase is a potential biomarker of fibrosis in systemic sclerosis. _Arthritis Rheumatol._ 66, 726–730 (2014). Article  PubMed


  Google Scholar  * Nguyen, X. X. et al. Lysyl oxidase directly contributes to extracellular matrix production and fibrosis in systemic sclerosis. _Am. J. Physiol. Lung Cell Mol. Physiol._


320, L29–L40 (2021). Article  CAS  PubMed  Google Scholar  * Siegel, R. C., Pinnell, S. R. & Martin, G. R. Cross-linking of collagen and elastin. Properties of lysyl oxidase.


_Biochemistry_ 9, 4486–4492 (1970). Article  CAS  PubMed  Google Scholar  * Peltonen, L., Palotie, A., Myllylä, R., Krieg, T. & Oikarinen, A. Collagen biosynthesis in systemic


scleroderma: regulation of posttranslational modifications and synthesis of procollagen in cultured fibroblasts. _J. Invest. Dermatol._ 84, 14–18 (1985). Article  CAS  PubMed  Google Scholar


  * Kawaguchi, Y. et al. Cytokine regulation of prolyl 4-hydroxylase production in skin fibroblast cultures from patients with systemic sclerosis: contribution to collagen synthesis and


fibrosis. _J. Rheumatol._ 19, 1195–1201 (1992). CAS  PubMed  Google Scholar  * Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation


of connective tissue remodelling. _Nat. Rev. Mol. Cell Biol._ 3, 349–363 (2002). Article  CAS  PubMed  Google Scholar  * Van De Water, L., Varney, S. & Tomasek, J. J. Mechanoregulation


of the myofibroblast in wound contraction, scarring, and fibrosis: opportunities for new therapeutic intervention. _Adv. Wound Care_ 2, 122–141 (2013). Article  Google Scholar  * Ogawa, R.


& Hsu, C. K. Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. _J. Cell Mol. Med._ 17, 817–822 (2013). Article  PubMed  PubMed Central 


Google Scholar  * Leask, A. The hard problem: mechanotransduction perpetuates the myofibroblast phenotype in scleroderma fibrosis. _Wound Repair. Regen._ 29, 582–587 (2021). Article  PubMed


  Google Scholar  * Spiera, R. et al. A randomised, double-blind, placebo-controlled phase 3 study of lenabasum in diffuse cutaneous systemic sclerosis: RESOLVE-1 design and rationale.


_Clin. Exp. Rheumatol._ 239, 124–133 (2021). Article  Google Scholar  * Khanna, D. et al. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial.


_Lancet Respir. Med._ 8, 963–974 (2020). Article  CAS  PubMed  Google Scholar  * Khanna, D. et al. An open-label, phase II study of the safety and tolerability of pirfenidone in patients


with scleroderma-associated interstitial lung disease: the LOTUSS trial. _J. Rheumatol._ 43, 1672–1679 (2016). Article  PubMed  Google Scholar  * Leask, A. Signaling in fibrosis: targeting


the TGFbeta, endothelin-1 and CCN2 axis in scleroderma. _Front. Biosci._ 1, 115–122 (2009). Google Scholar  * Leask, A., Holmes, A., Black, C. M. & Abraham, D. J. Connective tissue


growth factor gene regulation. Requirements for its induction by transforming growth factor-β2 in fibroblasts. _J. Biol. Chem._ 278, 13008–13015 (2003). Article  CAS  PubMed  Google Scholar


  * Thannickal, V. J. et al. Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. _J. Biol. Chem._


278, 12384–12389 (2003). Article  CAS  PubMed  Google Scholar  * Shi-wen, X. et al. Requirement of transforming growth factor β-activated kinase 1 for transforming growth factor β-induced


α-smooth muscle actin expression and extracellular matrix contraction in fibroblasts. _Arthritis Rheum._ 60, 234–241 (2009). Article  PubMed  Google Scholar  * Lagares, D. et al. Inhibition


of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. _Arthritis Rheum._ 64, 1653–1664 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Shi-wen, X. et al. Focal adhesion kinase and reactive oxygen species contribute to the persistent fibrotic phenotype of lesional scleroderma fibroblasts. _Rheumatology_ 51, 2146–2154 (2012).


Article  PubMed  Google Scholar  * Khan, Z. & Marshall, J. F. The role of integrins in TGFβ activation in the tumour stroma. _Cell Tissue Res._ 365, 657–673 (2016). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Asano, Y., Ihn, H., Jinnin, M., Mimura, Y. & Tamaki, K. Involvement of αvβ5 integrin in the establishment of autocrine TGF-β signaling in dermal


fibroblasts derived from localized scleroderma. _J. Invest. Dermatol._ 126, 1761–1769 (2006). Article  CAS  PubMed  Google Scholar  * Asano, Y. et al. Increased expression of integrin αvβ3


contributes to the establishment of autocrine TGF-β signaling in scleroderma fibroblasts. _J. Immunol._ 175, 7708–7718 (2005). Article  CAS  PubMed  Google Scholar  * Asano, Y., Ihn, H.,


Yamane, K., Jinnin, M. & Tamaki, K. Increased expression of integrin αvβ5 induces the myofibroblastic differentiation of dermal fibroblasts. _Am. J. Pathol._ 168, 499–510 (2006). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGF β1: a mechanism for regulating pulmonary inflammation and fibrosis.


_Cell_ 96, 319–328 (1999). Article  CAS  PubMed  Google Scholar  * Liu, S. et al. Expression of integrin β1 by fibroblasts is required for tissue repair in vivo. _J. Cell Sci._ 123,


3674–3682 (2010). Article  CAS  PubMed  Google Scholar  * Myllyharju, J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their


roles as treatment targets. _Ann. Med._ 40, 402–417 (2008). Article  CAS  PubMed  Google Scholar  * Gorres, K. L. & Raines, R. T. Prolyl 4-hydroxylase. _Crit. Rev. Biochem. Mol. Biol._


45, 106–124 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Franklin, T. J. Therapeutic approaches to organ fibrosis. _Int. J. Biochem. Cell Biol._ 29, 79–89 (1997). Article


  CAS  PubMed  Google Scholar  * Böker, K., Schwarting, G., Kaule, G., Günzler, V. & Schmidt, E. Fibrosis of the liver in rats induced by bile duct ligation. Effects of inhibition by


prolyl 4-hydroxylase. _J. Hepatol._ 13, S35–S40 (1991). Article  PubMed  Google Scholar  * Bickel, M. et al. Selective inhibition of hepatic collagen accumulation in experimental liver


fibrosis in rats by a new prolyl 4-hydroxylase inhibitor. _Hepatology_ 28, 404–411 (1998). Article  CAS  PubMed  Google Scholar  * Nwogu, J. I. et al. Inhibition of collagen synthesis with


prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. _Circulation_ 104, 2216–2221 (2001).


Article  CAS  PubMed  Google Scholar  * Bolarin, D. M., Palicharla, P. & Fuller, G. C. Enzymes of collagen synthesis in lung tissues of bleomycin-induced pulmonary fibrosis. _Toxicol.


Appl. Pharmacol._ 73, 188–191 (1984). Article  CAS  PubMed  Google Scholar  * Takeda, K., Kawai, S., Kato, F., Tetsuka, T. & Konno, K. Stimulation of prolyl hydroxylase activity by


bleomycin. _J. Antibiot._ 31, 884–887 (1978). Article  CAS  Google Scholar  * Tschank, G., Raghunath, M., Günzler, V. & Hanauske-Abel, H. M. Pyridinedicarboxylates, the first


mechanism-derived inhibitors for prolyl 4-hydroxylase, selectively suppress cellular hydroxyprolyl biosynthesis. Decrease in interstitial collagen and Clq secretion in cell culture.


_Biochem. J._ 248, 625–633 (1987). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vasta, J. D. et al. Selective inhibition of collagen prolyl 4-hydroxylase in human cells. _ACS


Chem. Biol._ 11, 193–199 (2016). Article  CAS  PubMed  Google Scholar  * Szauter, K. M., Cao, T., Boyd, C. D. & Csiszar, K. Lysyl oxidase in development, aging and pathologies of the


skin. _Pathol. Biol._ 53, 448–456 (2005). Article  CAS  PubMed  Google Scholar  * Pharmaxis. Product pipeline: amine oxidase platform. _Pharmaxis_


https://www.pharmaxis.com.au/product-pipeline/amine-oxidase-platform/ (2023). * Infante, J. R. et al. Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of


PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. _J. Clin. Oncol._ 30, 1527–1533 (2012). Article  CAS  PubMed  Google Scholar  * Peidl, A., Perbal, B. &


Leask, A. Yin/Yang expression of CCN family members: transforming growth factor beta 1, via ALK5/FAK/MEK, induces CCN1 and CCN2, yet suppresses CCN3, expression in human dermal fibroblasts.


_PLoS ONE_ 14, e0218178 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jones, S. F. et al. A phase I study of VS-6063, a second-generation focal adhesion kinase inhibitor,


in patients with advanced solid tumors. _Invest. N. Drugs_ 33, 1100–1107 (2015). Article  CAS  Google Scholar  * Gerber, D. E. et al. Phase 2 study of the focal adhesion kinase inhibitor


defactinib (VS-6063) in previously treated advanced KRAS mutant non-small cell lung cancer. _Lung Cancer_ 139, 60–67 (2020). Article  PubMed  Google Scholar  * Wang-Gillam, A. et al.


Defactinib, pembrolizumab, and gemcitabine in patients with advanced treatment refractory pancreatic cancer: a phase I dose escalation and expansion study. _Clin. Cancer Res._ 28, 5254–5262


(2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * François, R. A. et al. Targeting focal adhesion kinase and resistance to mTOR inhibition in pancreatic neuroendocrine tumors.


_J. Natl Cancer Inst._ 107, djv123 (2015). Article  PubMed  PubMed Central  Google Scholar  * Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that


regulates fibrosis in several organs. _Nat. Med._ 19, 1617–1624 (2013). Article  CAS  PubMed  Google Scholar  * Reed, N. I. et al. The αvβ1 integrin plays a critical in vivo role in tissue


fibrosis. _Sci. Transl. Med._ 7, 288ra79 (2015). Article  PubMed  PubMed Central  Google Scholar  * Mullard, A. Pliant’s integrin inhibitor boosted by phase II IPF data. _Nat. Rev. Drug.


Discov._ 21, 626 (2022). PubMed  Google Scholar  * Liu, S. & Leask, A. Integrin β1 is required for dermal homeostasis. _J. Invest. Dermatol._ 133, 899–906 (2013). Article  CAS  PubMed 


Google Scholar  * Riopel, M. M., Li, J., Liu, S., Leask, A. & Wang, R. β1 integrin-extracellular matrix interactions are essential for maintaining exocrine pancreas architecture and


function. _Lab. Invest._ 93, 31–40 (2013). Article  CAS  PubMed  Google Scholar  * Parapuram, S. K., Huh, K., Liu, S. & Leask, A. Integrin β1 is necessary for the maintenance of corneal


structural integrity. _Invest. Ophthalmol. Vis. Sci._ 52, 7799–7806 (2011). Article  CAS  PubMed  Google Scholar  * Liu, S. & Leask, A. Integrin β1 is required for maintenance of


vascular tone in postnatal mice. _J. Cell Commun. Signal._ 6, 175–180 (2012). Article  PubMed  PubMed Central  Google Scholar  * Zeltz, C. et al. Integrin α11β1 in tumor fibrosis: more than


just another cancer-associated fibroblast biomarker? _J. Cell Commun. Signal._ 16, 649–666 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zeltz, C. et al. α11β1 integrin is


induced in a subset of cancer-associated fibroblasts in desmoplastic tumor stroma and mediates in vitro cell migration. _Cancers_ 11, 765 (2019). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wang, W. et al. TAK1: a molecular link between liver inflammation, fibrosis, steatosis, and carcinogenesis. _Front. Cell Dev. Biol._ 9, 734749 (2021). Article  PubMed  PubMed


Central  Google Scholar  * Totzke, J. et al. Takinib, a selective TAK1 inhibitor, broadens the therapeutic efficacy of TNF-α inhibition for cancer and autoimmune disease. _Cell Chem. Biol._


24, 1029–1039.e7 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Scarneo, S. et al. Development and efficacy of an orally bioavailable selective TAK1 inhibitor for the


treatment of inflammatory arthritis. _ACS Chem. Biol._ 17, 536–544 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Scarneo, S. A. et al. Pharmacological inhibition of TAK1,


with the selective inhibitor takinib, alleviates clinical manifestation of arthritis in CIA mice. _Arthritis Res. Ther._ 21, 292 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Foster, C. T., Gualdrini, F. & Treisman, R. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal


dynamics. _Genes. Dev._ 31, 2361–2375 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gibault, F. et al. Non-photoinduced biological properties of verteporfin. _Curr. Med.


Chem._ 23, 1171–1184 (2016). Article  CAS  PubMed  Google Scholar  * Seeneevassen, L., Dubus, P., Gronnier, C. & Varon, C. Hippo in gastric cancer: from signalling to therapy. _Cancers_


14, 2282 (2022). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shi-Wen, X. et al. Verteporfin inhibits the persistent fibrotic phenotype of lesional scleroderma dermal fibroblasts.


_J. Cell Commun. Signal._ 15, 71–80 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chitturi, P. et al. The _Tripterygium wilfordii_ derivative celastrol, a YAP inhibitor,


has anti-fibrotic effects in systemic sclerosis. _Ann. Rheum. Dis._ 82, 1191–1204 (2023). PubMed  Google Scholar  * Shiwen, X. et al. A role of myocardin related transcription factor-A


(MRTF-A) in scleroderma related fibrosis. _PLoS ONE_ 10, e0126015 (2015). Article  PubMed  PubMed Central  Google Scholar  * Ma, H. Y. et al. Inhibition of MRTF activation as a clinically


achievable anti-fibrotic mechanism for pirfenidone. _Eur. Respir. J._ 61, 2200604 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Leask, A. Conjunction junction, what’s the


function? CCN proteins as targets in fibrosis and cancers. _Am. J. Physiol. Cell Physiol._ 318, C1046–C1054 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, Y. et al.


CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. _Mol. Biol. Cell_ 15, 5635–5646 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shi-wen,


X. et al. CCN2 is necessary for adhesive responses to transforming growth factor-β1 in embryonic fibroblasts. _J. Biol. Chem._ 281, 10715–10726 (2006). Article  PubMed  Google Scholar  *


Lau, L. F. Cell surface receptors for CCN proteins. _J. Cell Commun. Signal._ 10, 121–127 (2016). Article  PubMed  PubMed Central  Google Scholar  * Richeldi, L. et al. Pamrevlumab, an


anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. _Lancet Respir. Med._ 28, 25–33


(2020). Article  Google Scholar  * Makino, K. et al. Anti-connective tissue growth factor (CTGF/CCN2) monoclonal antibody attenuates skin fibrosis in mice models of systemic sclerosis.


_Arthritis Res. Ther._ 19, 134 (2017). Article  PubMed  PubMed Central  Google Scholar  * Liu, S., Thompson, K. & Leask, A. CCN2 expression by fibroblasts is not required for cutaneous


tissue repair. _Wound Repair. Regen._ 22, 119–124 (2014). Article  PubMed  Google Scholar  * Liu, S., Parapuram, S. K. & Leask, A. Fibrosis caused by loss of PTEN expression in mouse


fibroblasts is crucially dependent on CCN2. _Arthritis Rheum._ 65, 2940–2944 (2013). Article  CAS  PubMed  Google Scholar  * FibroGen. FibroGen announces topline results from phase 3


ZEPHYRUS-1 study of pamrevlumab for the treatment of idiopathic pulmonary fibrosis. _FibroGen_


https://fibrogen.gcs-web.com/news-releases/news-release-details/fibrogen-announces-topline-results-phase-3-zephyrus-1-study (2023). * Grazioli, S. et al. CYR61 (CCN1) overexpression induces


lung injury in mice. _Am. J. Physiol. Lung Cell Mol. Physiol._ 308, L759–L765 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kurundkar, A. R. et al. The matricellular


protein CCN1 enhances TGF-β1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury. _FASEB J._ 30, 2135–2150 (2016). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Kulkarni, T. et al. The senescence-associated matricellular protein CCN1 in plasma of human subjects with idiopathic pulmonary fibrosis. _Respir.


Med._ 161, 105821 (2020). Article  PubMed  Google Scholar  * Quesnel, K. et al. CCN1 expression by fibroblasts is required for bleomycin-induced skin fibrosis. _Matrix Biol._ 3, 100009


(2019). Article  Google Scholar  * Königshoff, M. et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary


fibrosis. _J. Clin. Invest._ 119, 772–787 (2009). PubMed  PubMed Central  Google Scholar  * FibroGen. Pamrevlumab trials. _FibroGen_ https://www.fibrogen.com/pamrevlumab-trials (2023). * Lu,


G. et al. Co-administered antibody improves penetration of antibody–dye conjugate into human cancers with implications for antibody–drug conjugates. _Nat. Commun._ 211, 5667 (2020). Article


  Google Scholar  * Resovi, A. et al. CCN-based therapeutic peptides modify pancreatic ductal adenocarcinoma microenvironment and decrease tumor growth in combination with chemotherapy.


_Cells_ 9, 952 (2020). Article  CAS  PubMed  PubMed Central  Google Scholar  * Riser, B. L., Barnes, J. L. & Varani, J. Balanced regulation of the CCN family of matricellular proteins: a


novel approach to the prevention and treatment of fibrosis and cancer. _J. Cell Commun. Signal._ 9, 327–339 (2015). Article  PubMed  PubMed Central  Google Scholar  * Leask, A. Yin and Yang


revisited: CCN3 as an anti-fibrotic therapeutic? _J. Cell Commun. Signal._ 9, 97–98 (2015). Article  PubMed  PubMed Central  Google Scholar  * & Leask, A. Yin and Yang: CCN3 inhibits


the pro-fibrotic effects of CCN2. _J. Cell Commun. Signal._ 3, 161–162 (2009). Article  PubMed  PubMed Central  Google Scholar  * Pliant Therapeutics. World-class drug development


capabilities. _Pliant_ https://pliantrx.com/pipeline/ (2023). * Adami, E. et al. IL11 is elevated in systemic sclerosis and IL11-dependent ERK signalling underlies TGFβ-mediated activation


of dermal fibroblasts. _Rheumatology_ 60, 5820–5826 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Werner, G. et al. Single-cell transcriptome analysis identifies


subclusters with inflammatory fibroblast responses in localized scleroderma. _Int. J. Mol. Sci._ 24, 9796 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ishida, Y.,


Kuninaka, Y., Mukaida, N. & Kondo, T. Immune mechanisms of pulmonary fibrosis with bleomycin. _Int. J. Mol. Sci._ 24, 3149 (2023). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Lagares, D. & Hinz, B. Animal and human models of tissue repair and fibrosis: an introduction. _Methods Mol. Biol._ 2299, 277–290 (2021). Article  CAS  PubMed  Google Scholar  Download


references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Andrew Leask & Angha Naik * Centre for


Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK Richard J. Stratton Authors * Andrew Leask View author publications You can also search for this author


inPubMed Google Scholar * Angha Naik View author publications You can also search for this author inPubMed Google Scholar * Richard J. Stratton View author publications You can also search


for this author inPubMed Google Scholar CONTRIBUTIONS All authors researched data for the article. A.L. and R.J.S. contributed substantially to discussion of the content. All authors wrote


the article. All authors reviewed and/or edited the manuscript before submission. CORRESPONDING AUTHOR Correspondence to Andrew Leask. ETHICS DECLARATIONS COMPETING INTERESTS The authors


declare no competing interests. PEER REVIEW PEER REVIEW INFORMATION _Nature Reviews Rheumatology_ thanks Yoshihide Asano, Gabriela Kania and the other, anonymous, reviewer(s) for their


contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional


affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s)


or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Leask, A., Naik, A. & Stratton, R.J. Back to the future: targeting the extracellular matrix to treat systemic sclerosis. _Nat Rev


Rheumatol_ 19, 713–723 (2023). https://doi.org/10.1038/s41584-023-01032-1 Download citation * Accepted: 31 August 2023 * Published: 03 October 2023 * Issue Date: November 2023 * DOI:


https://doi.org/10.1038/s41584-023-01032-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative