Leveraging diet to engineer the gut microbiome

Leveraging diet to engineer the gut microbiome


Play all audios:

Loading...

ABSTRACT Autoimmune diseases, including inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, have distinct clinical presentations but share underlying patterns of gut


microbiome perturbation and intestinal barrier dysfunction. Their potentially common microbial drivers advocate for treatment strategies aimed at restoring appropriate microbiome function,


but individual variation in host factors makes a uniform approach unlikely. In this Perspective, we consolidate knowledge on diet–microbiome interactions in local inflammation, gut


microbiota imbalance and host immune dysregulation. By understanding and incorporating the effects of individual dietary components on microbial metabolic output and host physiology, we


examine the potential for diet-based therapies for autoimmune disease prevention and treatment. We also discuss tools targeting the gut microbiome, such as faecal microbiota transplantation,


probiotics and orthogonal niche engineering, which could be optimized using custom dietary interventions. These approaches highlight paths towards leveraging diet for precise engineering of


the gut microbiome at a time of increasing autoimmune disease. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn


more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to


full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our


FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE IMPACT OF THE GUT MICROBIOME ON EXTRA-INTESTINAL AUTOIMMUNE DISEASES Article 09 May 2022 ENGINEERING THE GUT


MICROBIOME Article 16 June 2023 MICROBIOTA IN INFLAMMATORY BOWEL DISEASE: MECHANISMS OF DISEASE AND THERAPEUTIC OPPORTUNITIES Article 10 March 2025 REFERENCES * Bach, J. F. The effect of


infections on susceptibility to autoimmune and allergic diseases. _N. Engl. J. Med._ 347, 911–920 (2002). PubMed  Google Scholar  * Markle, J. G. M. et al. Sex differences in the gut


microbiome drive hormone-dependent regulation of autoimmunity. _Science_ 339, 1084–1088 (2013). CAS  PubMed  Google Scholar  * Inshaw, J. R. J., Cutler, A. J., Burren, O. S., Stefana, M. I.


& Todd, J. A. Approaches and advances in the genetic causes of autoimmune disease and their implications. _Nat. Immunol._ 19, 674–684 (2018). CAS  PubMed  Google Scholar  * Thorburn, A.


N., Macia, L. & Mackay, C. R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. _Immunity_ 40, 833–842 (2014). CAS  PubMed  Google Scholar  * Bach, J. F. The hygiene


hypothesis in autoimmunity: the role of pathogens and commensals. _Nat. Rev. Immunol._ 18, 105–120 (2018). CAS  PubMed  Google Scholar  * Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. &


Elinav, E. Dysbiosis and the immune system. _Nat. Rev. Immunol._ 17, 219–232 (2017). CAS  PubMed  Google Scholar  * Fugger, L., Jensen, L. T. & Rossjohn, J. Challenges, progress, and


prospects of developing therapies to treat autoimmune diseases. _Cell_ 181, 63–80 (2020). CAS  PubMed  Google Scholar  * Ananthakrishnan, A. N. et al. Gut microbiome function predicts


response to anti-integrin biologic therapy in inflammatory bowel diseases. _Cell Host Microbe_ 21, 603–610.e3 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Doherty, M. K. et al.


Fecal microbiota signatures are associated with response to ustekinumab therapy among Crohn’s disease patients. _mBio_ 9, e02120-17 (2018). PubMed  PubMed Central  Google Scholar  * Scher,


J. U., Nayak, R. R., Ubeda, C., Turnbaugh, P. J. & Abramson, S. B. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. _Nat. Rev.


Rheumatol._ 16, 282–292 (2020). PubMed  Google Scholar  * Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. _Cell Res._ 30, 492–506


(2020). PubMed  PubMed Central  Google Scholar  * Wasko, N. J., Nichols, F. & Clark, R. B. Multiple sclerosis, the microbiome, TLR2, and the hygiene hypothesis. _Autoimmun. Rev._ 19,


102430 (2020). CAS  PubMed  Google Scholar  * Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. _Nat. Rev. Microbiol._ 18, 521–538


(2020). CAS  PubMed  Google Scholar  * Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. _Proc. Natl


Acad. Sci. USA_ 114, 10713–10718 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Khalili, H. et al. The role of diet in the aetiopathogenesis of inflammatory bowel disease. _Nat. Rev.


Gastroenterol. Hepatol._ 15, 525–535 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from


sustainable food systems. _Lancet_ 393, 447–492 (2019). PubMed  Google Scholar  * Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. _Am.


J. Clin. Nutr._ 81, 341–354 (2005). CAS  PubMed  Google Scholar  * Kaoutari, A. E., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of


carbohydrate-active enzymes in the human gut microbiota. _Nat. Rev. Microbiol._ 11, 497–504 (2013). PubMed  Google Scholar  * Smits, S. A. et al. Seasonal cycling in the gut microbiome of


the Hadza hunter-gatherers of Tanzania. _Science_ 357, 802–806 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Lombard, V., Golaconda, R. H., Drula, E., Coutinho, P. & Henrissat,


B. BT2824 – the carbohydrate-active enzymes database (CAZy) in 2013. _Nucleic Acids Res_ 42, D490–D495 (2014). CAS  PubMed  Google Scholar  * Manzel, A. et al. Role of ‘western diet’ in


inflammatory autoimmune diseases. _Curr. Allergy Asthma Rep._ 14, 404 (2014). PubMed  PubMed Central  Google Scholar  * Konijeti, G. G. et al. Efficacy of the autoimmune protocol diet for


inflammatory bowel disease. _Inflamm. Bowel Dis._ 23, 2054–2060 (2017). PubMed  Google Scholar  * Damas, O. M., Garces, L. & Abreu, M. T. Diet as adjunctive treatment for inflammatory


bowel disease: review and update of the latest literature. _Curr. Treat. Options Gastroenterol._ 17, 313–325 (2019). PubMed  PubMed Central  Google Scholar  * Sonnenburg, E. D. et al.


Diet-induced extinctions in the gut microbiota compound over generations. _Nature_ 529, 212–215 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Chandrasekaran, A. et al. The


autoimmune protocol diet modifies intestinal RNA expression in inflammatory bowel disease. _Crohns Colitis 360_ 1, otz016 (2019). PubMed  PubMed Central  Google Scholar  * Klein, E. Y. et


al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. _Proc. Natl Acad. Sci. USA_ 115, e3463–e3470 (2018). CAS  PubMed  PubMed Central  Google


Scholar  * Postler, T. S. & Ghosh, S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. _Cell Metab._ 26, 110–130 (2017). CAS 


PubMed  PubMed Central  Google Scholar  * Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. _Gut_ 68, 1516–1526 (2019). CAS  PubMed  Google Scholar  *


Paray, B. A., Albeshr, M. F., Jan, A. T. & Rather, I. A. Leaky gut and autoimmunity: an intricate balance in individuals health and the diseased state. _Int. J. Mol. Sci._ 21, 9770


(2020). CAS  PubMed Central  Google Scholar  * Li, B., Selmi, C., Tang, R., Gershwin, M. E. & Ma, X. The microbiome and autoimmunity: a paradigm from the gut–liver axis. _Cell. Mol.


Immunol._ 15, 595–609 (2018). PubMed  PubMed Central  Google Scholar  * Márquez, A. et al. Meta-analysis of Immunochip data of four autoimmune diseases reveals novel single-disease and


cross-phenotype associations. _Genome Med._ 10, 97 (2018). PubMed  PubMed Central  Google Scholar  * Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and


personalized nutrition. _Nat. Rev. Microbiol._ 17, 742–753 (2019). CAS  PubMed  Google Scholar  * Inda, M. E., Broset, E., Lu, T. K. & de la Fuente-Nunez, C. Emerging Frontiers in


Microbiome Engineering. _Trends Immunol._ 40, 952–973 (2019). CAS  PubMed  Google Scholar  * Ruder, W. C., Lu, T. & Collins, J. J. Synthetic biology moving into the clinic. _Science_


333, 1248–1252 (2011). CAS  PubMed  Google Scholar  * O’Keefe, S. J. D. et al. Fat, fibre and cancer risk in African Americans and rural Africans. _Nat. Commun._ 6, 6342 (2015). PubMed 


Google Scholar  * Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. _Nat. Med._ 27, 321–332 (2021). CAS  PubMed 


PubMed Central  Google Scholar  * Parker, A., Fonseca, S. & Carding, S. R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. _Gut Microbes_


11, 135–157 (2020). PubMed  Google Scholar  * Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. _Cell_ 158,


705–721 (2014). CAS  PubMed  PubMed Central  Google Scholar  * Al Nabhani, Z. et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. _Immunity_


50, 1276–1288.e5 (2019). CAS  PubMed  Google Scholar  * Kalbermatter, C., Fernandez Trigo, N., Christensen, S. & Ganal-Vonarburg, S. C. Maternal microbiota, early life colonization and


breast milk drive immune development in the newborn. _Front. Immunol._ 12, 683022 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Bokulich, N. A. et al. Antibiotics, birth mode, and


diet shape microbiome maturation during early life. _Sci. Transl. Med._ 8, 343ra82 (2016). PubMed  PubMed Central  Google Scholar  * Mahmoud, T. I. et al. Autoimmune manifestations in aged


mice arise from early-life immune dysregulation. _Sci. Transl. Med._ 8, 361ra137 (2016). PubMed  PubMed Central  Google Scholar  * Vatanen, T. et al. The human gut microbiome in early-onset


type 1 diabetes from the TEDDY study. _Nature_ 562, 589–594 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Lawson, M. A. E. et al. Breast milk-derived human milk oligosaccharides


promote Bifidobacterium interactions within a single ecosystem. _ISME J._ 14, 635–648 (2020). CAS  PubMed  Google Scholar  * Fanning, S. et al. Bifidobacterial surface-exopolysaccharide


facilitates commensal-host interaction through immune modulation and pathogen protection. _Proc. Natl Acad. Sci. USA_ 109, 2108–2113 (2012). CAS  PubMed  PubMed Central  Google Scholar  *


Beaumont, M. et al. Gut microbiota derived metabolites contribute to intestinal barrier maturation at the suckling-to-weaning transition. _Gut Microbes_ 11, 1268–1286 (2020). CAS  PubMed 


PubMed Central  Google Scholar  * Zegarra-Ruiz, D. F. et al. A diet-sensitive commensal lactobacillus strain mediates TLR7-dependent systemic autoimmunity. _Cell Host Microbe_ 25, 113–127.e6


(2019). CAS  PubMed  Google Scholar  * D’Hennezel, E., Abubucker, S., Murphy, L. O. & Cullen, T. W. Total lipopolysaccharide from the human gut microbiome silences toll-like receptor


signaling. _mSystems_ 2, e00046-17 (2017). PubMed  PubMed Central  Google Scholar  * Fujiwara, M. et al. Enhanced TLR2 responses in multiple sclerosis. _Clin. Exp. Immunol._ 193, 313–326


(2018). CAS  PubMed  PubMed Central  Google Scholar  * Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. _Science_ 331, 337–341 (2011). CAS 


PubMed  Google Scholar  * Ohkura, N. et al. Regulatory T cell-specific epigenomic region variants are a key determinant of susceptibility to common autoimmune diseases. _Immunity_ 52,


1119–1132.e4 (2020). CAS  PubMed  Google Scholar  * Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. _Immunity_ 43, 727–738 (2015).


CAS  PubMed  PubMed Central  Google Scholar  * Cosorich, I. et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis.


_Sci. Adv._ 3, e1700492 (2017). PubMed  PubMed Central  Google Scholar  * Buscarinu M. C. et al. Altered intestinal permeability in patients with relapsing–remitting multiple sclerosis: a


pilot study. _Mult. Scler_. 23, 442–446 (2017). PubMed  Google Scholar  * Zhang, X., Chen, B. D., Zhao, L. D. & Li, H. The gut microbiota: emerging evidence in autoimmune diseases.


_Trends Mol. Med._ 26, 862–873 (2020). CAS  PubMed  Google Scholar  * Deehan, E. C. et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty


acid production. _Cell Host Microbe_ 27, 389–404.e6 (2020). CAS  PubMed  Google Scholar  * Swanson, K. S. et al. The International Scientific Association for Probiotics and Prebiotics


(ISAPP) consensus statement on the definition and scope of synbiotics. _Nat. Rev. Gastroenterol. Hepatol._ 17, 687–701 (2020). PubMed  PubMed Central  Google Scholar  * Hvas, C. L. et al.


Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent clostridium difficile infection. _Gastroenterology_ 156, 1324–1332.e3 (2019). PubMed  Google Scholar  *


Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. _Cell Host Microbe_ 17, 72–84 (2015). CAS  PubMed  Google Scholar  * Wu, G. D. et al. Comparative


metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. _Gut_ 65, 63–72 (2016). CAS  PubMed  Google Scholar  * Venkataraman, A. et al.


Variable responses of human microbiomes to dietary supplementation with resistant starch. _Microbiome_ 4, 33 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Sheflin, A. M., Melby, C.


L., Carbonero, F. & Weir, T. L. Linking dietary patterns with gut microbial composition and function. _Gut Microbes_ 8, 113–129 (2017). CAS  PubMed  Google Scholar  * Vangay, P. et al.


US immigration westernizes the human gut microbiome. _Cell_ 175, 962–972.e10 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Johnson, A. J. et al. Daily sampling reveals personalized


diet-microbiome associations in humans. _Cell Host Microbe_ 25, 789–802.e5 (2019). CAS  PubMed  Google Scholar  * Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary


fiber on gut microbiota in host health and disease. _Cell Host Microbe_ 23, 705–715 (2018). CAS  PubMed  Google Scholar  * McNulty, N. P. et al. Effects of diet on resource utilization by a


model human gut microbiota containing bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. _PLoS Biol._ 11, e1001637 (2013). CAS  PubMed  PubMed Central  Google


Scholar  * Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. _Gut Microbes_ 3, 289–306 (2012). PubMed  PubMed


Central  Google Scholar  * Tanes, C. et al. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. _Cell Host Microbe_ 29, 394–407.e5 (2021). CAS  PubMed 


PubMed Central  Google Scholar  * Déjean, G. et al. Synergy between cell surface glycosidases and glycan-binding proteins dictates the utilization of specific beta(1,3)-glucans by human gut


Bacteroides. _mBio_ 11, e00095-20 (2020). PubMed  PubMed Central  Google Scholar  * Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and


enhances pathogen susceptibility. _Cell_ 167, 1339–1353.e21 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. _Nat. Rev.


Gastroenterol. Hepatol._ 12, 205–217 (2015). PubMed  Google Scholar  * So, D. et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and


meta-analysis. _Am. J. Clin. Nutr._ 107, 965–983 (2018). PubMed  Google Scholar  * Liu, F. et al. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but


reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. _Sci. Rep._ 7, 11789 (2017). PubMed  PubMed Central  Google Scholar  * Valcheva, R. et al.


Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. _Gut Microbes_ 10, 334–357 (2019). CAS  PubMed  Google


Scholar  * Salyers, A. A., West, S. E. H., Vercellotti, J. R. & Wilkins, T. D. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. _Appl.


Environ. Microbiol._ 34, 529–533 (1977). CAS  PubMed  PubMed Central  Google Scholar  * Chung, W. S. F. et al. Modulation of the human gut microbiota by dietary fibres occurs at the species


level. _BMC Biol._ 14, 3 (2016). PubMed  PubMed Central  Google Scholar  * Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in


gnotobiotic mice. _Proc. Natl Acad. Sci. USA_ 108, 6252–6257 (2011). CAS  PubMed  PubMed Central  Google Scholar  * Elzinga, J., van der Oost, J., de Vos, W. M. & Smidt, H. The use of


defined microbial communities to model host-microbe interactions in the human gut. _Microbiol. Mol. Biol. Rev._ 83, e00054-18 (2019). PubMed  PubMed Central  Google Scholar  * Gibson, G. R.


et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. _Nat. Rev.


Gastroenterol. Hepatol._ 14, 491–502 (2017). PubMed  Google Scholar  * Singh, V. et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. _Cell_ 175,


679–394.e22 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Yao, C. K. & Staudacher, H. M. The low-fibre diet: contender in IBD, or has it had its time? _Lancet Gastroenterol.


Hepatol._ 4, 339 (2019). PubMed  Google Scholar  * Wastyk, H. C. et al. Gut microbiota-targeted diets modulate human immune status. _Cell_ 184, 4137–4153 (2020). Google Scholar  *


Ananthakrishnan, A. N. et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. _Gastroenterology_ 145, 970–977 (2013). CAS  PubMed


  Google Scholar  * Andersen, V. et al. Fibre intake and the development of inflammatory bowel disease: a European prospective multi-centre cohort study (EPIC-IBD). _J. Crohns Colitis_ 12,


129–136 (2018). PubMed  Google Scholar  * Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients


with ulcerative colitis. _Gut_ 63, 1275–1283 (2014). CAS  PubMed  Google Scholar  * Earley, H., Lennon, G., Coffey, J. C., Winter, D. C. & O’Connell, P. R. Colonisation of the colonic


mucus gel layer with butyrogenic and hydrogenotropic bacteria in health and ulcerative colitis. _Sci. Rep._ 11, 7262 (2021). CAS  PubMed  PubMed Central  Google Scholar  * Venegas, D. P. et


al. Short chain fatty acids (SCFAs) mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. _Front. Immunol._ 10, 277 (2019). CAS  Google Scholar  *


Wong, A. C. & Levy, M. New approaches to microbiome-based therapies. _mSystems_ 4, e00122-19 (2019). PubMed  PubMed Central  Google Scholar  * Salminen, S. et al. The International


Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. _Nat. Rev. Gastroenterol. Hepatol._


https://doi.org/10.1038/s41575-021-00440-6 (2021). Article  PubMed  PubMed Central  Google Scholar  * Baxter, N. T. et al. Dynamics of human gut microbiota and short-chain fatty acids in


response to dietary interventions with three fermentable fibers. _mBio_ 10, e02566-18 (2019). PubMed  PubMed Central  Google Scholar  * Sünderhauf, A. et al. Loss of mucosal p32/gC1qR/HABP1


triggers energy deficiency and impairs goblet cell differentiation in ulcerative colitis. _Cell. Mol. Gastroenterol. Hepatol._ 12, 229–250 (2021). PubMed  PubMed Central  Google Scholar  *


Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. _Science_ 357, 570–575 (2017). CAS  PubMed  PubMed Central  Google Scholar  *


Zeng, M. Y., Inohara, N. & Nuñez, G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. _Mucosal Immunol._ 10, 18–26 (2017). CAS  PubMed  Google Scholar  * Furusawa, Y. et


al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. _Nature_ 504, 446–450 (2013). CAS  PubMed  Google Scholar  * Louis, P. & Flint, H. J.


Formation of propionate and butyrate by the human colonic microbiota. _Environ. Microbiol._ 19, 29–41 (2017). CAS  PubMed  Google Scholar  * Duscha, A. et al. Propionic acid shapes the


multiple sclerosis disease course by an immunomodulatory mechanism. _Cell_ 180, 1067–1080.e16 (2020). CAS  PubMed  Google Scholar  * Cohen, A. B. et al. Dietary patterns and self-reported


associations of diet with symptoms of inflammatory bowel disease. _Dig. Dis. Sci._ 58, 1322–1328 (2013). CAS  PubMed  Google Scholar  * Levine, A. et al. Crohn’s disease exclusion diet plus


partial enteral nutrition induces sustained remission in a randomized controlled trial. _Gastroenterology_ 157, 440–450.e8 (2019). PubMed  Google Scholar  * Horwat, P. et al. Influence of


enteral nutrition on gut microbiota composition in patients with Crohn’s disease: a systematic review. _Nutrients_ 12, 2551 (2020). CAS  PubMed Central  Google Scholar  * Walton, C. et al.


Enteral feeding reduces metabolic activity of the intestinal microbiome in Crohn’s disease: an observational study. _Eur. J. Clin. Nutr._ 70, 1052–1056 (2016). CAS  PubMed  Google Scholar  *


Cignarella, F. et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. _Cell Metab._ 27, 1222–1235.e6 (2018). CAS  PubMed  PubMed Central  Google


Scholar  * Wang, H. et al. Dietary non-digestible polysaccharides ameliorate intestinal epithelial barrier dysfunction in IL-10 knockout mice. _J. Crohns Colitis_ 10, 1076–1086 (2016).


PubMed  Google Scholar  * Richards, J. L., Yap, Y. A., McLeod, K. H., MacKay, C. R. & Marinõ, E. Dietary metabolites and the gut microbiota: an alternative approach to control


inflammatory and autoimmune diseases. _Clin. Transl. Immunol._ 5, e82 (2016). Google Scholar  * Macfarlane, G. T., Gibson, G. R., Beatty, E. & Cummings, J. H. Estimation of short-chain


fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. _FEMS Microbiol. Lett._ 101, 81–88 (1992). CAS  Google Scholar  * Llewellyn,


S. R. et al. Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice. _Gastroenterology_ 154, 1037–1046.e2 (2018). PubMed  Google


Scholar  * Kostovcikova, K. et al. Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice. _Front. Immunol._ 10, 919 (2019). CAS  PubMed 


PubMed Central  Google Scholar  * Dallas, D. C. et al. Personalizing protein nourishment. _Crit. Rev. Food Sci. Nutr._ 57, 3313–3331 (2017). CAS  PubMed  PubMed Central  Google Scholar  *


Portune, K. J. et al. Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. _Trends Food Sci. Technol._ 57, 213–232 (2016). CAS  Google


Scholar  * Gibson, G. R., Cummings, J. H. & Macfarlane, G. T. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative


colitis. _FEMS Microbiol. Lett._ 86, 103–111 (1991). CAS  Google Scholar  * Sridharan, G. V. et al. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. _Nat.


Commun._ 5, 5492 (2014). CAS  PubMed  Google Scholar  * Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. _Cell Host Microbe_


23, 716–724 (2018). CAS  PubMed  Google Scholar  * Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. _Nat.


Med._ 22, 598–605 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Islam, J. et al. Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon


receptor in mice. _J. Nutr. Biochem._ 42, 43–50 (2017). CAS  PubMed  Google Scholar  * Kepert, I. et al. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic


airway disease. _J. Allergy Clin. Immunol._ 139, 1525–1535 (2017). CAS  PubMed  Google Scholar  * Sonner, J. K. et al. Dietary tryptophan links encephalogenicity of autoreactive T cells with


gut microbial ecology. _Nat. Commun._ 10, 4877 (2019). PubMed  PubMed Central  Google Scholar  * Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and


colitis in Il10−/− mice. _Nature_ 487, 104–108 (2012). CAS  PubMed  PubMed Central  Google Scholar  * Watanabe, M., Fukiya, S. & Yokota, A. Comprehensive evaluation of the bactericidal


activities of free bile acids in the large intestine of humans and rodents. _J. Lipid Res._ 58, 1143–1152 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Casadevall, A. The pathogenic


potential of a microbe. _mSphere_ 2, e00015-17 (2017). PubMed  PubMed Central  Google Scholar  * Holscher, H. D. et al. Walnut consumption alters the gastrointestinal microbiota,


microbially derived secondary bile acids, and health markers in healthy adults: a randomized controlled trial. _J. Nutr._ 148, 861–867 (2018). PubMed  PubMed Central  Google Scholar  * Kim,


K. A., Gu, W., Lee, I. A., Joh, E. H. & Kim, D. H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. _PLoS ONE_ 7, e47713


(2012). CAS  PubMed  PubMed Central  Google Scholar  * Cani, P. D. et al. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional


glucagon-like peptide 1 receptor. _Diabetes_ 55, 1484–1490 (2006). CAS  PubMed  Google Scholar  * Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in


humans. _Cell_ 165, 842–853 (2016). CAS  PubMed  PubMed Central  Google Scholar  * Steimle, A. et al. Weak agonistic LPS restores intestinal immune homeostasis. _Mol. Ther._ 27, 1974–1991


(2019). CAS  PubMed  PubMed Central  Google Scholar  * Ang, Q. Y. et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. _Cell_ 181, 1263–1275.e16


(2020). CAS  PubMed  PubMed Central  Google Scholar  * Lam, Y. Y. et al. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in


mice. _Obesity_ 23, 1429–1439 (2015). CAS  PubMed  Google Scholar  * Wolters, M. et al. Dietary fat, the gut microbiota, and metabolic health–a systematic review conducted within the


MyNewGut project. _Clin. Nutr._ 38, 2504–2520 (2019). PubMed  Google Scholar  * De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children


from Europe and rural Africa. _Proc. Natl Acad. Sci. USA_ 107, 14691–14696 (2010). PubMed  PubMed Central  Google Scholar  * Watson, H. et al. A randomised trial of the effect of omega-3


polyunsaturated fatty acid supplements on the human intestinal microbiota. _Gut_ 67, 1974–1983 (2018). CAS  PubMed  Google Scholar  * Tindall, A. M., McLimans, C. J., Petersen, K. S.,


Kris-Etherton, P. M. & Lamendella, R. Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors:


follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. _J. Nutr._ 150, 806–817 (2020). PubMed  Google Scholar  * Swidsinski, A. et al. Reduced


mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. _Front. Microbiol._ 8, 1141 (2017). PubMed  PubMed Central  Google


Scholar  * Kong, C. et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. _Signal. Transduct. Target. Ther._ 6, 154


(2021). CAS  PubMed  PubMed Central  Google Scholar  * Ni, F.-F. et al. The effects of ketogenic diet on the Th17/Treg cells imbalance in patients with intractable childhood epilepsy.


_Seizure_ 38, 17–22 (2016). PubMed  Google Scholar  * Monteiro, C. A. et al. Ultra-processed foods: what they are and how to identify them. _Public. Health Nutr._ 22, 936–941 (2019). PubMed


  Google Scholar  * Zinöcker, M. K. & Lindseth, I. A. The western diet–microbiome–host interaction and its role in metabolic disease. _Nutrients_ 10, 365 (2018). PubMed Central  Google


Scholar  * Carmody, R. N. et al. Cooking shapes the structure and function of the gut microbiome. _Nat. Microbiol._ 4, 2052–2063 (2019). PubMed  PubMed Central  Google Scholar  * Koppel, N.,


Rekdal, V. M. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. _Science_ 356, eaag2770 (2017). PubMed  Google Scholar  * Arcila, J. A. & Rose, D.


J. Repeated cooking and freezing of whole wheat flour increases resistant starch with beneficial impacts on in vitro fecal fermentation properties. _J. Funct. Foods_ 12, 230–236 (2015). CAS


  Google Scholar  * Lerner, A. & Matthias, T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune


disease. _Autoimmun. Rev._ 14, 479–489 (2015). CAS  PubMed  Google Scholar  * Obih, C. et al. Specific carbohydrate diet for pediatric inflammatory bowel disease in clinical practice within


an academic IBD center. _Nutrition_ 32, 418–425 (2016). PubMed  Google Scholar  * Cox, S. R. et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in


patients with quiescent inflammatory bowel disease in a randomized trial. _Gastroenterology_ 158, 176–188.e7 (2020). CAS  PubMed  Google Scholar  * Chassaing, B. et al. Dietary emulsifiers


impact the mouse gut microbiota promoting colitis and metabolic syndrome. _Nature_ 519, 92–96 (2015). CAS  PubMed  PubMed Central  Google Scholar  * Stephen, A. M. et al. Dietary fibre in


Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. _Nutr. Res. Rev._ 30, 149–190 (2017). CAS  PubMed  Google Scholar  * Logan,


M. et al. Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn’s disease — new insights into dietary disease triggers. _Aliment. Pharmacol. Ther._ 51,


935–947 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Brüssow, H. Problems with the concept of gut microbiota dysbiosis. _Microb. Biotechnol._ 13, 423–434 (2020). PubMed  Google


Scholar  * Volkova, A. & Ruggles, K. V. Predictive metagenomic analysis of autoimmune disease identifies robust autoimmunity and disease specific microbial signatures. _Front.


Microbiol._ 12, 621310 (2021). PubMed  PubMed Central  Google Scholar  * Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. _Cell_ 163, 1079–1094 (2015). CAS 


PubMed  Google Scholar  * Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. _Cell_ 174,


1388–1405.e21 (2018). CAS  PubMed  Google Scholar  * Korem, T. et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. _Cell Metab._ 25,


1243–1253.e5 (2017). CAS  PubMed  Google Scholar  * The Adaptive Platform Trials Coalition Adaptive platform trials: definition, design, conduct and reporting considerations. _Nat. Rev. Drug


Discov._ 18, 797–807 (2019). Google Scholar  * Holzinger, D., Kessel, C., Omenetti, A. & Gattorno, M. From bench to bedside and back again: translational research in autoinflammation.


_Nat. Rev. Rheumatol._ 11, 573–585 (2015). CAS  PubMed  Google Scholar  * Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. _Nat. Rev.


Microbiol._ 14, 20–32 (2016). CAS  PubMed  Google Scholar  * Wei, Y. et al. Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss of


diversity of gut flora. _BMC Microbiol._ 16, 255 (2016). PubMed  PubMed Central  Google Scholar  * Kearney, S. M., Gibbons, S. M., Erdman, S. E. & Alm, E. J. Orthogonal dietary niche


enables reversible engraftment of a gut bacterial commensal. _Cell Rep._ 24, 1842–1851 (2018). CAS  PubMed  PubMed Central  Google Scholar  * Shepherd, E. S., Deloache, W. C., Pruss, K. M.,


Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. _Nature_ 557, 434–438 (2018). CAS  PubMed  PubMed Central  Google


Scholar  * Quraishi, M. N. et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile


infection. _Aliment. Pharmacol. Ther._ 46, 479–493 (2017). CAS  PubMed  Google Scholar  * de Groot, P. et al. Faecal microbiota transplantation halts progression of human new-onset type 1


diabetes in a randomised controlled trial. _Gut_ 70, 92–105 (2021). PubMed  Google Scholar  * Engen, P. A. et al. Single-arm, non-randomized, time series, single-subject study of fecal


microbiota transplantation in multiple sclerosis. _Front. Neurol._ 11, 978 (2020). PubMed  PubMed Central  Google Scholar  * Van Beurden, Y. H. et al. Serendipity in refractory celiac


disease: full recovery of duodenal villi and clinical symptoms after fecal microbiota transfer. _J. Gastrointest. Liver Dis._ 25, 385–388 (2016). Google Scholar  * Zeng, J. et al. Fecal


microbiota transplantation for rheumatoid arthritis: a case report. _Clin. Case Rep._ 9, 906–909 (2021). PubMed  Google Scholar  * Costello, S. P. et al. Effect of fecal microbiota


transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. _JAMA_ 321, 156–164 (2019). PubMed  PubMed Central  Google Scholar  * Moayyedi, P. et


al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. _Gastroenterology_ 149, 102–109.e6 (2015). PubMed  Google


Scholar  * Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. _Lancet_ 389, 1218–1228 (2017).


PubMed  Google Scholar  * Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. _Gastroenterology_ 149, 110–118.e4


(2015). PubMed  Google Scholar  * Vaughn, B. P. et al. Increased intestinal microbial diversity following fecal microbiota transplant for active Crohn’s disease. _Inflamm. Bowel Dis._ 22,


2182–2190 (2016). PubMed  Google Scholar  * Cui, B. et al. Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility, and efficacy trial results.


_J. Gastroenterol. Hepatol._ 30, 51–58 (2015). CAS  PubMed  Google Scholar  * Philips, C. A. et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic


hepatitis: a pilot study. _Clin. Gastroenterol. Hepatol._ 15, 600–602 (2017). PubMed  Google Scholar  * Mullish, B. H., McDonald, J. A. K., Thursz, M. R. & Marchesi, J. R. Fecal


microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. _Hepatol_ 66, 1354–1355 (2017). Google Scholar  * Kootte, R. S. et al.


Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. _Cell Metab._ 26, 611–619.e6 (2017). CAS  PubMed 


Google Scholar  * Kang, D. W. et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. _Sci. Rep._ 9, 5821 (2019). PubMed  PubMed Central  Google


Scholar  * Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. _Nature_ 569, 655–662 (2019). CAS  PubMed  PubMed Central  Google Scholar  *


Dailey, F. E., Turse, E. P., Daglilar, E. & Tahan, V. The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. _Curr. Opin. Pharmacol._


49, 29–33 (2019). CAS  PubMed  Google Scholar  * Wilson, B. C., Vatanen, T., Cutfield, W. S. & O’Sullivan, J. M. The super-donor phenomenon in fecal microbiota transplantation. _Front.


Cell. Infect. Microbiol._ 9, 2 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Knox, N. C., Forbes, J. D., Van Domselaar, G. & Bernstein, C. N. The gut microbiome as a target for


IBD treatment: are we there yet? _Curr. Treat. Options Gastroenterol._ 17, 115–126 (2019). PubMed  Google Scholar  * Burrello, C. et al. Therapeutic faecal microbiota transplantation


controls intestinal inflammation through IL10 secretion by immune cells. _Nat. Commun._ 9, 5184 (2018). PubMed  PubMed Central  Google Scholar  * Jang, Y. O. et al. Fecal microbial


transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis. _Exp. Mol. Med._ 52, 1128–1139 (2020). CAS  PubMed  PubMed Central  Google


Scholar  * Anhê, F. F. et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. _Gut_


68, 453–464 (2019). PubMed  Google Scholar  * Petrof, E. O. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut.


_Microbiome_ 1, 3 (2013). PubMed  PubMed Central  Google Scholar  * Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. _Nature_ 565, 600–605


(2019). CAS  PubMed  Google Scholar  * Sood, A. et al. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. _Clin. Gastroenterol.


Hepatol._ 7, 1202–1209 (2009). PubMed  Google Scholar  * Derwa, Y., Gracie, D. J., Hamlin, P. J. & Ford, A. C. Systematic review with meta-analysis: the efficacy of probiotics in


inflammatory bowel disease. _Aliment. Pharmacol. Ther._ 46, 389–400 (2017). CAS  PubMed  Google Scholar  * Ganji-Arjenaki, M. & Rafieian-Kopaei, M. Probiotics are a good choice in


remission of inflammatory bowel diseases: a meta analysis and systematic review. _J. Cell. Physiol._ 233, 2091–2103 (2018). CAS  PubMed  Google Scholar  * Shigemori, S. & Shimosato, T.


Applications of genetically modified immunobiotics with high immunoregulatory capacity for treatment of inflammatory bowel diseases. _Front. Immunol._ 8, 22 (2017). PubMed  PubMed Central 


Google Scholar  * Sales-Campos, H., Soares, S. C. & Oliveira, C. J. F. An introduction of the role of probiotics in human infections and autoimmune diseases. _Crit. Rev. Microbiol._ 45,


413–432 (2019). PubMed  Google Scholar  * Flach, J., van der Waal, M. B., van den Nieuwboer, M., Claassen, E. & Larsen, O. F. A. The underexposed role of food matrices in probiotic


products: reviewing the relationship between carrier matrices and product parameters. _Crit. Rev. Food Sci. Nutr._ 58, 2570–2584 (2018). CAS  PubMed  Google Scholar  * Cassani, L.,


Gomez-Zavaglia, A. & Simal-Gandara, J. Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: from food processing and storage to their passage


through the gastrointestinal tract. _Food Res. Int._ 129, 108852 (2020). CAS  PubMed  Google Scholar  * Bezkorovainy, A. Probiotics: determinants of survival and growth in the gut. _Am. J.


Clin. Nutr._ 73 (Suppl. 2), 399–405 (2001). Google Scholar  * Maldonado-Gómez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized


features of the resident microbiome. _Cell Host Microbe_ 20, 515–526 (2016). PubMed  Google Scholar  * Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by


probiotics and improved by autologous FMT. _Cell_ 174, 1406–1423.e16 (2018). CAS  PubMed  Google Scholar  * Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization


resistance and the strategies pathogens use to overcome them. _Mucosal Immunol._ 12, 1–9 (2019). CAS  PubMed  Google Scholar  * Champagne, C. P., Gardner, N. J. & Roy, D. Challenges in


the addition of probiotic cultures to foods. _Crit. Rev. Food Sci. Nutr._ 45, 61–84 (2005). CAS  PubMed  Google Scholar  * Fujimori, S. et al. A randomized controlled trial on the efficacy


of synbiotic versus probiotic or prebiotic treatment to improve the quality of life in patients with ulcerative colitis. _Nutrition_ 25, 520–525 (2009). PubMed  Google Scholar  * Amiriani,


T. et al. Effect of Lactocare® synbiotic on disease severity in ulcerative colitis: a randomized placebo-controlled double-blind clinical trial. _Middle East. J. Dig. Dis._ 12, 27–33 (2020).


PubMed  PubMed Central  Google Scholar  * Furrie, E. et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative


colitis: a randomised controlled pilot trial. _Gut_ 54, 242–249 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Steed, H. et al. Clinical trial: the microbiological and immunological


effects of synbiotic consumption - a randomized double-blind placebo-controlled study in active Crohn’s disease. _Aliment. Pharmacol. Ther._ 32, 872–883 (2010). CAS  PubMed  Google Scholar 


* Zamani, B., Farshbaf, S., Golkar, H. R., Bahmani, F. & Asemi, Z. Synbiotic supplementation and the effects on clinical and metabolic responses in patients with rheumatoid arthritis: a


randomised, double-blind, placebo-controlled trial. _Br. J. Nutr._ 117, 1095–1102 (2017). CAS  PubMed  Google Scholar  * Zare Javid, A., Aminzadeh, M., Haghighi-Zadeh, M. H. &


Jamalvandi, M. The effects of synbiotic supplementation on glycemic status, lipid profile, and biomarkers of oxidative stress in type 1 diabetic patients. A placebo-controlled, double-blind,


randomized clinical trial. _Diabetes Metab. Syndr. Obes._ 13, 607–617 (2020). PubMed  PubMed Central  Google Scholar  * Chen, L., Yang, T., Song, Y., Shu, G. & Chen, H. Effect of


xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt. _LWT Food Sci. Technol._ 81,


274–280 (2017). CAS  Google Scholar  * Fratianni, F. et al. Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated


gastrointestinal conditions. _J. Microencapsul._ 31, 299–305 (2014). CAS  PubMed  Google Scholar  * Cook, M. T., Tzortzis, G., Charalampopoulos, D. & Khutoryanskiy, V. V.


Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. _Int. J. Pharm._ 466, 400–408 (2014). CAS  PubMed  Google Scholar  * Hehemann, J. H. et al. Transfer of


carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. _Nature_ 464, 908–912 (2010). CAS  PubMed  Google Scholar  * Pudlo, N. A. et al. Extensive transfer of genes for


edible seaweed digestion from marine to human gut bacteria. Preprint at _bioRxiv_ https://doi.org/10.1101/2020.06.09.142968 (2020). Article  Google Scholar  * Walter, J., Britton, R. A.


& Roos, S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. _Proc. Natl Acad. Sci. USA_ 108, 4645–4652 (2011). CAS  PubMed 


Google Scholar  * Martínez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. _Cell Rep._ 11, 527–538 (2015). PubMed 


Google Scholar  * Mu, Q. et al. Control of lupus nephritis by changes of gut microbiota. _Microbiome_ 5, 73 (2017). PubMed  PubMed Central  Google Scholar  * He, B. et al. Lactobacillus


reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota. _Front. Immunol._ 10, 385 (2019). CAS  PubMed  PubMed Central  Google Scholar


  * De Moreno De Leblanc, A. et al. Evaluation of the biosafety of recombinant lactic acid bacteria designed to prevent and treat colitis. _J. Med. Microbiol._ 65, 1038–1046 (2016). PubMed 


Google Scholar  * Zeng, L. et al. An engineering probiotic producing defensin-5 ameliorating dextran sodium sulfate-induced mice colitis via Inhibiting NF-κB pathway. _J. Transl. Med._ 18,


107 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Lerner, A., Matthias, T. & Aminov, R. Potential effects of horizontal gene exchange in the human gut. _Front. Immunol._ 8, 1630


(2017). PubMed  PubMed Central  Google Scholar  * Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. _Lancet_ 393, 434–445 (2019).


CAS  PubMed  Google Scholar  * Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. _eLi__fe_ 2, e01202 (2013). PubMed  PubMed


Central  Google Scholar  * Kjeldsen-Kragh, J. et al. Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. _Lancet_ 338, 899–902 (1991). CAS  PubMed  Google


Scholar  * Stoll, M. L. Genetics, Prevotella, and the pathogenesis of rheumatoid arthritis. _Lancet Rheumatol._ 2, e375–e376 (2020). Google Scholar  * Peltonen, R. et al. Faecal microbial


flora and disease activity in rheumatoid arthritis during a vegan diet. _Br. J. Rheumatol._ 36, 64–68 (1997). CAS  PubMed  Google Scholar  * Charbonneau, M. R., Isabella, V. M., Li, N. &


Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. _Nat. Commun._ 11, 1738 (2020). CAS  PubMed  PubMed Central  Google Scholar  *


FitzGerald, M. J. & Spek, E. J. Microbiome therapeutics and patent protection. _Nat. Biotechnol._ 38, 806–810 (2020). CAS  PubMed  Google Scholar  * Lloyd-Price, J., Abu-Ali, G. &


Huttenhower, C. The healthy human microbiome. _Genome Med._ 8, 51 (2016). PubMed  PubMed Central  Google Scholar  * Schellekens, H. et al. Bifidobacterium longum counters the effects of


obesity: partial successful translation from rodent to human. _EBioMedicine_ 63, 103176 (2021). CAS  PubMed  Google Scholar  * Fragiadakis, G. K. et al. Long-term dietary intervention


reveals resilience of the gut microbiota despite changes in diet and weight. _Am. J. Clin. Nutr._ 111, 1127–1136 (2020). PubMed  PubMed Central  Google Scholar  * Genoni, A. et al. Long-term


Paleolithic diet is associated with lower resistant starch intake, different gut microbiota composition and increased serum TMAO concentrations. _Eur. J. Nutr._ 59, 1845–1848 (2020). CAS 


PubMed  Google Scholar  * Saresella, M. et al. Immunological and clinical effect of diet modulation of the gut microbiome in multiple sclerosis patients: a pilot study. _Front. Immunol._ 8,


1391 (2017). PubMed  PubMed Central  Google Scholar  * Laffin, M. et al. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in


mice. _Sci. Rep._ 9, 12294 (2019). PubMed  PubMed Central  Google Scholar  * Rodriguez-Palacios, A. et al. The artificial sweetener Splenda promotes gut proteobacteria, dysbiosis, and


myeloperoxidase reactivity in Crohn’s disease-like ileitis. _Inflamm. Bowel Dis._ 24, 1005–1020 (2018). PubMed  PubMed Central  Google Scholar  * Grabinger, T. et al. Alleviation of


intestinal inflammation by oral supplementation with 2-fucosyllactose in mice. _Front. Microbiol._ 10, 1385 (2019). PubMed  PubMed Central  Google Scholar  * Berer, K. et al. Dietary


non-fermentable fiber prevents autoimmune neurological disease by changing gut metabolic and immune status. _Sci. Rep._ 8, 10431 (2018). PubMed  PubMed Central  Google Scholar  * Chen, K. et


al. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. _Mol. Nutr. Food Res._ 61, 1601006


(2017). Google Scholar  * Gudi, R. et al. Complex dietary polysaccharide modulates gut immune function and microbiota, and promotes protection from autoimmune diabetes. _Immunology_ 157,


70–85 (2019). CAS  PubMed  PubMed Central  Google Scholar  * Rosser, E. C. et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in


regulatory B cells. _Cell Metab._ 31, 837–851.e10 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Zhang, T. et al. Sodium butyrate reduces colitogenic immunoglobulin A-coated bacteria


and modifies the composition of microbiota in IL-10 deficient mice. _Nutrients_ 8, 728 (2016). PubMed Central  Google Scholar  * Choi, S. C. et al. Gut microbiota dysbiosis and altered


tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. _Sci. Transl. Med._ 12, eaax2220 (2020). CAS  PubMed  PubMed Central  Google Scholar  * Alrafas, H. R., Busbee, P.


B., Nagarkatti, M. & Nagarkatti, P. S. Resveratrol modulates the gut microbiota to prevent murine colitis development through induction of Tregs and suppression of Th17 cells. _J.


Leukoc. Biol._ 106, 467–480 (2019). CAS  PubMed  Google Scholar  * Constante, M., Fragoso, G., Calvé, A., Samba-Mondonga, M. & Santos, M. M. Dietary heme induces gut dysbiosis,


aggravates colitis, and potentiates the development of adenomas in mice. _Front. Microbiol._ 8, 1809 (2017). PubMed  PubMed Central  Google Scholar  * Lee, T. et al. Oral versus intravenous


iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. _Gut_ 66, 863–871 (2016). PubMed  Google Scholar  * Miranda, P. M. et al. High salt diet


exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. _Microbiome_ 6, 57 (2018). PubMed  PubMed Central  Google Scholar  * Wilck, N. et al. Salt-responsive


gut commensal modulates TH17 axis and disease. _Nature_ 551, 585–589 (2017). CAS  PubMed  PubMed Central  Google Scholar  * Eaton, S. B. & Konner, M. Paleolithic nutrition: a


consideration of its nature and current implications. _N. Engl. J. Med._ 312, 283–289 (1985). CAS  PubMed  Google Scholar  * Cordain, L. et al. Plant-animal subsistence ratios and


macronutrient energy estimations in worldwide hunter-gatherer diets. _Am. J. Clin. Nutr._ 71, 682–692 (2000). CAS  PubMed  Google Scholar  * Diamond, J. Evolution, consequences and future of


plant and animal domestication. _Nature_ 418, 700–707 (2002). CAS  PubMed  Google Scholar  * Burkitt, D. Related disease — related cause? _Lancet_ 294, 1229–1231 (1969). Google Scholar  *


Burkitt, D. P., Walker, A. R. P. & Painter, N. S. Dietary fiber and disease. _JAMA_ 229, 1068–1074 (1974). CAS  PubMed  Google Scholar  * Aries, V., Crowther, J. S., Drasar, B. S., Hill,


M. J. & Williams, R. E. Bacteria and the aetiology of cancer of the large bowel. _Gut_ 10, 334–335 (1969). CAS  PubMed  PubMed Central  Google Scholar  * Gu, P. & Feagins, L. A.


Dining with inflammatory bowel disease: a review of the literature on diet in the pathogenesis and management of IBD. _Inflamm. Bowel Dis._ 26, 181–191 (2020). PubMed  Google Scholar  *


Sabino, J., Lewis, J. D. & Colombel, J. F. Treating inflammatory bowel disease with diet: a taste test. _Gastroenterology_ 157, 295–297 (2019). PubMed  Google Scholar  * Hou, J. K., Lee,


D. & Lewis, J. Diet and inflammatory bowel disease: review of patient-targeted recommendations. _Clin. Gastroenterol. Hepatol._ 12, 1592–1600 (2014). PubMed  Google Scholar  * Moayyedi,


P., Simrén, M. & Bercik, P. Evidence-based and mechanistic insights into exclusion diets for IBS. _Nat. Rev. Gastroenterol. Hepatol._ 17, 406–413 (2020). CAS  PubMed  Google Scholar 


Download references ACKNOWLEDGEMENTS This work was supported by the following grants in the laboratory of M.S.D.: Luxembourg National Research Fund (FNR) CORE grants (C15/BM/10318186 and


C18/BM/12585940) to M.S.D.; M.B. was supported by a European Commission Horizon 2020 Marie Skłodowska-Curie Actions individual fellowship (897408); M.W. was supported by a Fulbright grant


for Visiting Scholars from the Commission for Educational Exchange between the United States of America, Belgium and Luxembourg; E.T.G. was supported by the Luxembourg National Research Fund


PRIDE (17/11823097) and the Fondation du Pélican de Mie et Pierre Hippert-Faber, under the aegis of the Fondation de Luxembourg. G.V.P. was supported by a fellowship from the W. Garfield


Weston Foundation and E.C.M. acknowledges the financial support from National Institutes of Health (DK118024). AUTHOR INFORMATION Author notes * These authors contributed equally: Mathis


Wolter, Erica T. Grant. AUTHORS AND AFFILIATIONS * Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg Mathis Wolter, Erica T. Grant, Marie


Boudaud, Alex Steimle & Mahesh S. Desai * Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg Mathis Wolter & Erica T. Grant *


University of Michigan Medical School, Ann Arbor, MI, USA Gabriel V. Pereira & Eric C. Martens * Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center,


Odense University Hospital, University of Southern Denmark, Odense, Denmark Mahesh S. Desai Authors * Mathis Wolter View author publications You can also search for this author inPubMed 


Google Scholar * Erica T. Grant View author publications You can also search for this author inPubMed Google Scholar * Marie Boudaud View author publications You can also search for this


author inPubMed Google Scholar * Alex Steimle View author publications You can also search for this author inPubMed Google Scholar * Gabriel V. Pereira View author publications You can also


search for this author inPubMed Google Scholar * Eric C. Martens View author publications You can also search for this author inPubMed Google Scholar * Mahesh S. Desai View author


publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS All authors have contributed to the writing and editing of the manuscript. CORRESPONDING AUTHOR


Correspondence to Mahesh S. Desai. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews


Gastroenterology & Hepatology_ thanks R. Carmody and the other, anonymous, reviewers for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains


neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Wolter, M., Grant, E.T., Boudaud, M. _et al._ Leveraging diet to engineer the gut microbiome. _Nat Rev Gastroenterol Hepatol_ 18, 885–902


(2021). https://doi.org/10.1038/s41575-021-00512-7 Download citation * Accepted: 06 August 2021 * Published: 27 September 2021 * Issue Date: December 2021 * DOI:


https://doi.org/10.1038/s41575-021-00512-7 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative