Retrieval of phase relation and emission profile of quantum cascade laser frequency combs

Retrieval of phase relation and emission profile of quantum cascade laser frequency combs


Play all audios:

Loading...

ABSTRACT Recently, the field of optical frequency combs experienced a major development of new sources. They are generally much smaller in size (on the scale of millimetres) and can extend


frequency comb emission to other spectral regions, in particular towards the mid- and far-infrared regions. Unlike classical pulsed frequency combs, their mode-locking mechanism relies on


four-wave-mixing nonlinear processes, yielding a non-trivial phase relation among the modes and an uncommon emission time profile. Here, by combining dual-comb multi-heterodyne detection


with Fourier-transform analysis, we show how to simultaneously acquire and monitor over a wide range of timescales the phase pattern of a generic (unknown) frequency comb. The technique is


applied to characterize both a mid-infrared and a terahertz quantum cascade laser frequency comb, conclusively proving the high degree of coherence and the remarkable long-term stability of


these sources. Moreover, the technique allows also the reconstruction of the electric field, intensity profile and instantaneous frequency of the emission. Access through your institution


Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals


Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only


$17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EXTREME-ULTRAVIOLET FREQUENCY


COMBS FOR PRECISION METROLOGY AND ATTOSECOND SCIENCE Article 28 January 2021 TOWARDS PHASE-STABILIZED FOURIER DOMAIN MODE-LOCKED FREQUENCY COMBS Article Open access 17 August 2022


FEMTOSECOND PULSES FROM A MID-INFRARED QUANTUM CASCADE LASER Article 22 November 2021 DATA AVAILABILITY The data that support the plots within this paper and other findings of this study are


available from the corresponding authors upon reasonable request. REFERENCES * Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical


frequency synthesis. _Science_ 288, 635–639 (2000). Article  ADS  Google Scholar  * Diddams, S. A. et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond


laser comb. _Phys. Rev. Lett._ 84, 5102–5105 (2000). Article  ADS  Google Scholar  * Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. _Phys. Rev. Lett._ 85,


2264–2267 (2000). Article  ADS  Google Scholar  * Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. _Nature_ 416, 233–237 (2002). Article  ADS  Google Scholar  *


Diddams, S. A. The evolving optical frequency comb. _J. Opt. Soc. Am. B_ 27, B51 (2010). Article  Google Scholar  * Faist, J. et al. Quantum cascade laser. _Science_ 264, 553–556 (1994).


Article  ADS  Google Scholar  * Beck, M. et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. _Science_ 295, 301–305 (2002). Article  ADS  Google


Scholar  * Köhler, R. et al. Terahertz semiconductor-heterostructure laser. _Nature_ 417, 156–159 (2002). Article  ADS  Google Scholar  * Tombez, L. et al. Wavelength tuning and thermal


dynamics of continuous-wave mid-infrared distributed feedback quantum cascade lasers. _Appl. Phys. Lett._ 103, 031111 (2013). Article  ADS  Google Scholar  * Consolino, L., Cappelli, F.,


Siciliani de Cumis, M. & De Natale, P. QCL-based frequency metrology from the mid-infrared to the THz range: a review. _Nanophotonics_ 8, 181–204 (2018). Article  Google Scholar  *


Faist, J. _Quantum Cascade Lasers_ (Oxford Univ. Press, 2013). * Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser.


_Nature_ 492, 229–233 (2012). Article  ADS  Google Scholar  * Malara, P. et al. External ring-cavity quantum cascade lasers. _Appl. Phys. Lett._ 102, 141105 (2013). Article  ADS  Google


Scholar  * Faist, J. et al. Quantum cascade laser frequency combs. _Nanophotonics_ 5, 272–291 (2016). Article  Google Scholar  * Wang, C. Y. et al. Mode-locked pulses from mid-infrared


quantum cascade lasers. _Opt. Express_ 17, 12929–12943 (2009). Article  ADS  Google Scholar  * Revin, D. G., Hemingway, M., Wang, Y., Cockburn, J. W. & Belyanin, A. Active mode locking


of quantum cascade lasers in an external ring cavity. _Nat. Commun._ 7, 11440 (2016). Article  ADS  Google Scholar  * Barbieri, S. et al. Coherent sampling of active mode-locked terahertz


quantum cascade lasers and frequency synthesis. _Nat. Photon._ 5, 306–313 (2011). Article  ADS  Google Scholar  * Wang, F. et al. Short terahertz pulse generation from a dispersion


compensated modelocked semiconductor laser. _Laser Photon. Rev._ 11, 1700013 (2017). Article  ADS  Google Scholar  * Riedi, S., Hugi, A., Bismuto, A., Beck, M. & Faist, J. Broadband


external cavity tuning in the 3−4 μm window. _Appl. Phys. Lett._ 103, 031108 (2013). Article  ADS  Google Scholar  * Riedi, S. et al. Broadband superluminescence, 5.9 μm to 7.2 μm, of a


quantum cascade gain device. _Opt. Express_ 23, 7184–7189 (2015). Article  ADS  Google Scholar  * Burghoff, D. et al. Terahertz laser frequency combs. _Nat. Photon._ 8, 462–467 (2014).


Article  ADS  Google Scholar  * Rösch, M., Scalari, G., Beck, M. & Faist, J. Octave-spanning semiconductor laser. _Nat. Photon._ 9, 42–47 (2014). Article  ADS  Google Scholar  * Friedli,


P. et al. Four-wave mixing in a quantum cascade laser amplifier. _Appl. Phys. Lett._ 102, 222104 (2013). Article  ADS  Google Scholar  * DeLong, K. W., Trebino, R., Hunter, J. & White,


W. E. Frequency-resolved optical gating with the use of second-harmonic generation. _J. Opt. Soc. Am. B_ 11, 2206–2215 (1994). Article  ADS  Google Scholar  * Freeman, J. R. et al. Electric


field sampling of modelocked pulses from a quantum cascade laser. _Opt. Express_ 21, 16162–16169 (2013). Article  ADS  Google Scholar  * Villares, G., Hugi, A., Blaser, S. & Faist, J.


Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. _Nat. Commun._ 5, 5192 (2014). Article  ADS  Google Scholar  * Cappelli, F. et al. Frequency stability characterization


of a quantum cascade laser frequency comb. _Laser Photon. Rev._ 10, 623–630 (2016). Article  ADS  Google Scholar  * Cappelli, F., Villares, G., Riedi, S. & Faist, J. Intrinsic linewidth


of quantum cascade laser frequency combs. _Optica_ 2, 836–840 (2015). Article  Google Scholar  * Burghoff, D. et al. Evaluating the coherence and time-domain profile of quantum cascade


laser frequency combs. _Opt. Express_ 23, 1190–1202 (2015). Article  ADS  Google Scholar  * Singleton, M., Jouy, P., Beck, M. & Faist, J. Evidence of linear chirp in mid-infrared quantum


cascade lasers. _Optica_ 5, 948–953 (2018). Article  Google Scholar  * Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. _Opt. Lett._ 29,


1542–1544 (2004). Article  ADS  Google Scholar  * Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. _Optica_ 3, 414–426 (2016). Article  Google Scholar  * Chen, Z., Yan,


M., Hänsch, T. & Picqué, N. A phase-stable dual-comb interferometer. _Nat. Commun._ 9, 3035 (2018). Article  ADS  Google Scholar  * Galli, I. et al. High-coherence mid-infrared frequency


comb. _Opt. Express_ 21, 28877–28885 (2013). Article  ADS  Google Scholar  * Galli, I. et al. Mid-infrared frequency comb for broadband high precision and sensitivity molecular


spectroscopy. _Opt. Lett._ 39, 5050–5053 (2014). Article  ADS  Google Scholar  * Campo, G. et al. Shaping the spectrum of a down-converted mid-infrared frequency comb. _J. Opt. Soc. Am. B_


34, 2287–2294 (2017). Article  ADS  Google Scholar  * Consolino, L. et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. _Nat. Commun._ 3, 1040


(2012). Article  ADS  Google Scholar  * Bartalini, S. et al. Frequency-comb-assisted terahertz quantum cascade laser spectroscopy. _Phys. Rev. X_ 4, 021006 (2014). Google Scholar  *


Benea-Chelmus, I.-C., Rösch, M., Scalari, G., Beck, M. & Faist, J. Intensity autocorrelation measurements of frequency combs in the terahertz range. _Phys. Rev. A_ 96, 033821 (2017).


Article  ADS  Google Scholar  * Wang, F. et al. Generating ultrafast pulses of light from quantum cascade lasers. _Optica_ 2, 944–949 (2015). Article  Google Scholar  * Ferdous, F. et al.


Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. _Nat. Photon._ 5, 770–776 (2011). Article  ADS  Google Scholar  * Khurgin, J. B., Dikmelik, Y., Hugi, A. &


Faist, J. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. _Appl. Phys. Lett._ 104, 081118 (2014). Article  ADS  Google Scholar  * Villares, G. &


Faist, J. Quantum cascade laser combs: effects of modulation and dispersion. _Opt. Express_ 23, 1651–1669 (2015). Article  ADS  Google Scholar  * Tzenov, P., Burghoff, D., Hu, Q. &


Jirauschek, C. Time domain modeling of terahertz quantum cascade lasers for frequency comb generation. _Opt. Express_ 24, 23232–23247 (2016). Article  ADS  Google Scholar  * Del’Haye, P.,


Beha, K., Papp, S. B. & Diddams, S. A. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. _Phys. Rev. Lett._ 112, 043905 (2014). Article  ADS


  Google Scholar  * Herr, T. et al. Temporal solitons in optical microresonators. _Nat. Photon._ 8, 145–152 (2013). Article  ADS  Google Scholar  * Mazzacurati, V., Benassi, P. & Ruocco,


G. A new class of multiple dispersion grating spectrometers. _J. Phys. E_ 21, 798–804 (1988). Article  ADS  Google Scholar  Download references ACKNOWLEDGEMENTS The authors acknowledge


financial support from the Ministero dell’Istruzione, dell’Università e della Ricerca (project PRIN-2015KEZNYM NEMO), the European Union’s Horizon 2020 research and innovation programme


(Laserlab-Europe Project, grant no. 654148; CHIC Project, ERC grant no. 724344; ULTRAQCL Project, FET Open grant no 665158; Qombs Project, FET Flagship on Quantum Technologies grant no.


820419), the Italian ESFRI Roadmap (‘Extreme Light Infrastructure’—ELI Project) and the Swiss National Science Foundation (SNF200020-165639). AUTHOR INFORMATION Author notes * These authors


contributed equally: Francesco Cappelli, Luigi Consolino. AUTHORS AND AFFILIATIONS * CNR-INO – Istituto Nazionale di Ottica, Florence, Italy Francesco Cappelli, Luigi Consolino, Giulio


Campo, Iacopo Galli, Davide Mazzotti, Annamaria Campa, Pablo Cancio Pastor, Roberto Eramo, Paolo De Natale & Saverio Bartalini * LENS – European Laboratory for Non-Linear Spectroscopy,


Sesto Fiorentino, Italy Francesco Cappelli, Luigi Consolino, Giulio Campo, Iacopo Galli, Davide Mazzotti, Annamaria Campa, Pablo Cancio Pastor, Roberto Eramo, Paolo De Natale & Saverio


Bartalini * ppqSense Srl, Campi Bisenzio, Italy Iacopo Galli, Davide Mazzotti, Pablo Cancio Pastor & Saverio Bartalini * ASI – Agenzia Spaziale Italiana, Contrada Terlecchia, Matera,


Italy Mario Siciliani de Cumis * Institute for Quantum Electronics, ETH Zurich, Zürich, Switzerland Markus Rösch, Mattias Beck, Giacomo Scalari & Jérôme Faist Authors * Francesco


Cappelli View author publications You can also search for this author inPubMed Google Scholar * Luigi Consolino View author publications You can also search for this author inPubMed Google


Scholar * Giulio Campo View author publications You can also search for this author inPubMed Google Scholar * Iacopo Galli View author publications You can also search for this author


inPubMed Google Scholar * Davide Mazzotti View author publications You can also search for this author inPubMed Google Scholar * Annamaria Campa View author publications You can also search


for this author inPubMed Google Scholar * Mario Siciliani de Cumis View author publications You can also search for this author inPubMed Google Scholar * Pablo Cancio Pastor View author


publications You can also search for this author inPubMed Google Scholar * Roberto Eramo View author publications You can also search for this author inPubMed Google Scholar * Markus Rösch


View author publications You can also search for this author inPubMed Google Scholar * Mattias Beck View author publications You can also search for this author inPubMed Google Scholar *


Giacomo Scalari View author publications You can also search for this author inPubMed Google Scholar * Jérôme Faist View author publications You can also search for this author inPubMed 


Google Scholar * Paolo De Natale View author publications You can also search for this author inPubMed Google Scholar * Saverio Bartalini View author publications You can also search for


this author inPubMed Google Scholar CONTRIBUTIONS F.C. and S.B. conceived the experiment. L.C., F.C., G.C., I.G., M.S.d.C., A.C., P.C.P. and R.E. performed the measurements. F.C., G.C., R.E.


and S.B. analysed the data. L.C. and F.C. wrote the manuscript. G.C., D.M., M.S.d.C., P.C.P., R.E., S.B., G.S., J.F. and P.D.N. contributed to manuscript revision. J.F., G.S., M.R. and M.B.


provided the quantum cascade lasers. L.C., F.C., D.M., P.C.P., R.E., S.B., G.S., J.F. and P.D.N. discussed the results. All work was performed under the joint supervision of P.D.N. and S.B.


CORRESPONDING AUTHORS Correspondence to Francesco Cappelli or Luigi Consolino. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION


PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION


This file contains more information about the work and Supplementary Figs. 1–6. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Cappelli, F., Consolino,


L., Campo, G. _et al._ Retrieval of phase relation and emission profile of quantum cascade laser frequency combs. _Nat. Photonics_ 13, 562–568 (2019).


https://doi.org/10.1038/s41566-019-0451-1 Download citation * Received: 24 July 2018 * Accepted: 29 April 2019 * Published: 17 June 2019 * Issue Date: August 2019 * DOI:


https://doi.org/10.1038/s41566-019-0451-1 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative