Machine learning for nanoplasmonics

Machine learning for nanoplasmonics


Play all audios:

Loading...

ABSTRACT Plasmonic nanomaterials have outstanding optoelectronic properties potentially enabling the next generation of catalysts, sensors, lasers and photothermal devices. Owing to optical


and electron techniques, modern nanoplasmonics research generates large datasets characterizing features across length scales. Furthermore, optimizing syntheses leading to specific


nanostructures requires time-consuming multiparametric approaches. These complex datasets and trial-and-error practices make nanoplasmonics research ripe for the application of machine


learning (ML) and advanced data processing methods. ML algorithms capture relationships between synthesis, structure and performance in a way that far exceeds conventional simulation and


theory approaches, enabling effective performance optimization. For example, neural networks can tailor the nanostructure morphology to target desired properties, identify synthetic


conditions and extract quantitative information from complex data. Here we discuss the nascent field of ML for nanoplasmonics, describe the opportunities and limitations of ML in


nanoplasmonic research, and conclude that ML is potentially transformative, especially if the community curates and shares its big data. Access through your institution Buy or subscribe This


is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our


best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NANOPARTICLE SYNTHESIS ASSISTED BY


MACHINE LEARNING Article 13 July 2021 TWO-STEP MACHINE LEARNING ENABLES OPTIMIZED NANOPARTICLE SYNTHESIS Article Open access 20 April 2021 A ROBOTIC PLATFORM FOR THE SYNTHESIS OF COLLOIDAL


NANOCRYSTALS Article Open access 02 March 2023 REFERENCES * Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. _Chem. Rev._ 111, 3828–3857 (2011). Article  CAS 


Google Scholar  * Langer, J. et al. Present and future of surface-enhanced Raman scattering. _ACS Nano_ 14, 28–117 (2020). Article  CAS  Google Scholar  * Willets, K. A., Wilson, A. J.,


Sundaresan, V. & Joshi, P. B. Super-resolution imaging and plasmonics. _Chem. Rev._ 117, 7538–7582 (2017). Article  CAS  Google Scholar  * Brongersma, M. L., Halas, N. J. &


Nordlander, P. Plasmon-induced hot carrier science and technology. _Nat. Nanotechnol._ 10, 25–34 (2015). Article  CAS  Google Scholar  * Baffou, G. & Quidant, R. Nanoplasmonics for


chemistry. _Chem. Soc. Rev._ 43, 3898–3907 (2014). Article  CAS  Google Scholar  * Park, W., Lu, D. & Ahn, S. Plasmon enhancement of luminescence upconversion. _Chem. Soc. Rev._ 44,


2940–2962 (2015). Article  CAS  Google Scholar  * Gu, M. et al. Nanoplasmonics: a frontier of photovoltaic solar cells. _Nanophotonics_ 1, 235–248 (2012). Article  CAS  Google Scholar  *


Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. _Light Sci. Appl_ 9, 90 (2020). Article  CAS  Google Scholar  * Abadeer, N. S. & Murphy, C. J. Recent progress in


cancer thermal therapy using gold nanoparticles. _J. Phys. Chem. C_ 120, 4691–4716 (2016). Article  CAS  Google Scholar  * Xavier, J., Yu, D. S., Jones, C., Zossimova, E. & Vollmer, F.


Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip. _Nanophotonics_ 10, 1387–1435 (2021). Article  CAS  Google Scholar  * Zhou, Z.-K. et


al. Quantum plasmonics get applied. _Prog. Quantum Electron._ 65, 1–20 (2019). Article  Google Scholar  * Henry, A.-I. et al. Correlated structure and optical property studies of plasmonic


nanoparticles. _J. Phys. Chem. C_ 115, 9291–9305 (2011). Article  CAS  Google Scholar  * Carleo, G. et al. Machine learning and the physical sciences. _Rev. Mod. Phys._ 91, 045002 (2019).


Article  CAS  Google Scholar  * Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. _Nature_ 559, 547–555 (2018).


Article  CAS  Google Scholar  * Brown, K. A., Brittman, S., Maccaferri, N., Jariwala, D. & Celano, U. Machine learning in nanoscience: big data at small scales. _Nano Lett._ 20, 2–10


(2020). Article  CAS  Google Scholar  * Vahidzadeh, E. & Shankar, K. Artificial neural network-based prediction of the optical properties of spherical core–shell plasmonic


metastructures. _Nanomaterials_ 11, 633 (2021). Article  CAS  Google Scholar  * Malkiel, I. et al. Plasmonic nanostructure design and characterization via deep learning. _Light Sci. Appl._


7, 60 (2018). Article  Google Scholar  * Kim, W. et al. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. _ACS Nano_ 12, 7100–7108 (2018). Article 


CAS  Google Scholar  * Lussier, F., Missirlis, D., Spatz, J. P. & Masson, J. F. Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite


gradients near cells. _ACS Nano_ 13, 1403–1411 (2019). CAS  Google Scholar  * Shi, H. et al. Setting up a surface-enhanced Raman scattering database for artificial-intelligence-based


label-free discrimination of tumor suppressor genes. _Anal. Chem._ 90, 14216–14221 (2018). Article  CAS  Google Scholar  * Tao, H. et al. Nanoparticle synthesis assisted by machine learning.


_Nat. Rev. Mater._ 6, 701–716 (2021). Article  Google Scholar  * Yen, S.-C., Chen, Y.-L. & Su, Y.-H. Materials genome evolution of surface plasmon resonance characteristics of Au


nanoparticles decorated ZnO nanorods. _APL Mater._ 8, 091109 (2020). Article  CAS  Google Scholar  * Leong, Y. X. et al. Surface-enhanced Raman scattering (SERS) taster: a


machine-learning-driven multireceptor platform for multiplex profiling of wine flavors. _Nano Lett._ 21, 2642–2649 (2021). Article  CAS  Google Scholar  * Macias, G. et al. Whisky tasting


using a bimetallic nanoplasmonic tongue. _Nanoscale_ 11, 15216–15223 (2019). Article  CAS  Google Scholar  * Zhang, T. et al. Efficient spectrum prediction and inverse design for plasmonic


waveguide systems based on artificial neural networks. _Photon. Res._ 7, 368–380 (2019). Article  CAS  Google Scholar  * Nelson, M. D. & Di Vece, M. Using a neural network to improve the


optical absorption in halide perovskite layers containing core-shells silver nanoparticles. _Nanomaterials_ 9, 437 (2019). Article  CAS  Google Scholar  * He, J., He, C., Zheng, C., Wang,


Q. & Ye, J. Plasmonic nanoparticle simulations and inverse design using machine learning. _Nanoscale_ 11, 17444–17459 (2019). Article  CAS  Google Scholar  * Roberts, N. B. &


Keshavarz Hedayati, M. A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color. _Appl. Phys. Lett._ 119, 061101 (2021). Article  CAS 


Google Scholar  * Wang, M., Wang, T., Cai, P. & Chen, X. Nanomaterials discovery and design through machine learning. _Small Methods_ 3, 1900025 (2019). Article  Google Scholar  * Kelly,


K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. _J. Phys. Chem. B_ 107, 668–677


(2003). Article  CAS  Google Scholar  * Li, X., Shu, J., Gu, W. & Gao, L. Deep neural network for plasmonic sensor modeling. _Opt. Mater. Express_ 9, 3857–3862 (2019). Article  CAS 


Google Scholar  * Pashkov, D. M. et al. Quantitative analysis of the UV–vis spectra for gold nanoparticles powered by supervised machine learning. _J. Phys. Chem. C_ 125, 8656–8666 (2021).


Article  CAS  Google Scholar  * Arzola-Flores, J. A. & Gonzalez, A. L. Machine learning for predicting the surface plasmon resonance of perfect and concave gold nanocubes. _J. Phys.


Chem. C_ 124, 25447–25454 (2020). Article  CAS  Google Scholar  * Hiszpanski, A. M. et al. Nanomaterial synthesis insights from machine learning of scientific articles by extracting,


structuring, and visualizing knowledge. _J. Chem. Inf. Model._ 60, 2876–2887 (2020). Article  CAS  Google Scholar  * Ashalley, E. et al. Multitask deep-learning-based design of chiral


plasmonic metamaterials. _Photon. Res._ 8, 1213–1225 (2020). Article  CAS  Google Scholar  * Sajedian, I., Badloe, T. & Rho, J. Optimisation of colour generation from dielectric


nanostructures using reinforcement learning. _Opt. Express_ 27, 5874–5883 (2019). Article  CAS  Google Scholar  * Liu, D., Tan, Y., Khoram, E. & Yu, Z. Training deep neural networks for


the inverse design of nanophotonic structures. _ACS Photonics_ 5, 1365–1369 (2018). Article  CAS  Google Scholar  * Kasani, S., Curtin, K. & Wu, N. A review of 2D and 3D plasmonic


nanostructure array patterns: fabrication, light management and sensing applications. _Nanophotonics_ 8, 2065–2089 (2019). Article  CAS  Google Scholar  * Glotzer, S. C. & Solomon, M. J.


Anisotropy of building blocks and their assembly into complex structures. _Nat. Mater._ 6, 557–562 (2007). Article  Google Scholar  * MacFarlane, R. J. et al. Nanoparticle superlattice


engineering with DNA. _Science_ 334, 204–208 (2011). Article  CAS  Google Scholar  * Tao, H. C. et al. Nanoparticle synthesis assisted by machine learning. _Nat. Rev. Mater._ 6, 701–716


(2021). Article  Google Scholar  * Ringe, E., Van Duyne, R. P. & Marks, L. D. Kinetic and thermodynamic modified Wulff constructions for twinned nanoparticles. _J. Phys. Chem. C_ 117,


15859–15870 (2013). Article  CAS  Google Scholar  * Salley, D. et al. A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles. _Nat. Commun._ 11,


2771 (2020). Article  CAS  Google Scholar  * Pinho, B. & Torrente-Murciano, L. Dial-a-particle: precise manufacturing of plasmonic nanoparticles based on early growth information -


redefining automation for slow material synthesis. _Adv. Energy Mater._ 11, 2100918 (2021). Article  CAS  Google Scholar  * Britton, J. & Raston, C. L. Multi-step continuous-flow


synthesis. _Chem. Soc. Rev._ 46, 1250–1271 (2017). Article  CAS  Google Scholar  * Volk, A. A., Epps, R. W. & Abolhasani, M. Accelerated development of colloidal nanomaterials enabled by


modular microfluidic reactors: toward autonomous robotic experimentation. _Adv. Mater._ 33, 2004495 (2021). Article  CAS  Google Scholar  * Coley, C. W., Green, W. H. & Jensen, K. F.


Machine learning in computer-aided synthesis planning. _Acc. Chem. Res._ 51, 1281–1289 (2018). Article  CAS  Google Scholar  * Copp, S. M., Bogdanov, P., Debord, M., Singh, A. & Gwinn,


E. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning. _Adv. Mater._ 26, 5839–5845 (2014). Article  CAS  Google Scholar  * Copp, S. M. et


al. Fluorescence color by data-driven design of genomic silver clusters. _ACS Nano_ 12, 8240–8247 (2018). Article  CAS  Google Scholar  * Adorf, C. S., Moore, T. C., Melle, Y. J. U. &


Glotzer, S. C. Analysis of self-assembly pathways with unsupervised machine learning algorithms. _J. Phys. Chem. B_ 124, 69–78 (2020). Article  CAS  Google Scholar  * Dijkstra, M. &


Luijten, E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. _Nat. Mater._ 20, 762–773 (2021). Article  CAS  Google Scholar  * Nette, J.,


Howes, P. D. & deMello, A. J. Microfluidic synthesis of luminescent and plasmonic nanoparticles: fast, efficient, and data-rich. _Adv. Mater. Technol._ 5, 2000060 (2020). Article  CAS 


Google Scholar  * Wu, C.-C., Pan, F. & Su, Y.-H. Surface plasmon resonance of gold nano-sea-urchins controlled by machine-learning-based regulation in seed-mediated growth. _Adv. Photon.


Res._ 2, 2170031 (2021). Article  Google Scholar  * Mekki-Berrada, F. et al. Two-step machine learning enables optimized nanoparticle synthesis. _npj Comput. Mater._ 7, 55 (2021). Article 


CAS  Google Scholar  * Dong, B. et al. Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method, and quick evaluation via machine learning. _Ultrason. Sonochem._


73, 105485 (2021). Article  CAS  Google Scholar  * Fernandes, D. L. A. et al. Green microfluidic synthesis of monodisperse silver nanoparticles via genetic algorithm optimization. _RSC


Adv._ 6, 95693–95697 (2016). Article  CAS  Google Scholar  * Fukada, K. & Seyama, M. Microfluidic devices controlled by machine learning with failure experiments. _Anal. Chem._ 94,


7060–7065 (2022). Article  CAS  Google Scholar  * Moen, E. et al. Deep learning for cellular image analysis. _Nat. Methods_ 16, 1233–1246 (2019). Article  CAS  Google Scholar  * Hopper, E.


R. et al. Size control in the colloidal synthesis of plasmonic magnesium nanoparticles. _J. Phys. Chem. C_ 126, 563–577 (2022). Article  CAS  Google Scholar  * Woehrle, G. H., Hutchinson, J.


E., Ozkar, S. & Finke, R. G. Analysis of nanoparticle transmission electron microscopy data using a public- domain image-processing program, image. _Turk. J. Chem._ 30, 1–13 (2006). CAS


  Google Scholar  * Wang, X. et al. Autodetect-mNP: an unsupervised machine learning algorithm for automated analysis of transmission electron microscope images of metal nanoparticles. _JACS


Au_ 1, 316–327 (2021). Article  CAS  Google Scholar  * Lee, B. et al. Statistical characterization of the morphologies of nanoparticles through machine learning based electron microscopy


image analysis. _ACS Nano_ 14, 17125–17133 (2020). Article  CAS  Google Scholar  * Xu, S. et al. Deep learning analysis of polaritonic wave images. _ACS Nano_ 15, 18182–18191 (2021). Article


  CAS  Google Scholar  * Yao, L., Ou, Z., Luo, B., Xu, C. & Chen, Q. Machine learning to reveal nanoparticle dynamics from liquid-phase TEM videos. _ACS Cent. Sci._ 6, 1421–1430 (2020).


Article  CAS  Google Scholar  * Zhong, Y., Li, C., Zhou, H. & Wang, G. Developing noise-resistant three-dimensional single particle tracking using deep neural networks. _Anal. Chem._ 90,


10748–10757 (2018). Article  CAS  Google Scholar  * Moon, G., Son, T., Lee, H. & Kim, D. Deep learning approach for enhanced detection of surface plasmon scattering. _Anal. Chem._ 91,


9538–9545 (2019). Article  CAS  Google Scholar  * Ma, Y. P., Li, Q., Luo, J. B., Huang, C. Z. & Zhou, J. Weak reaction scatterometry of plasmonic resonance light scattering with machine


learning. _Anal. Chem._ 93, 12131–12138 (2021). Article  CAS  Google Scholar  * Horgan, C. C. et al. High-throughput molecular imaging via deep-learning-enabled Raman spectroscopy. _Anal.


Chem._ 93, 15850–15860 (2021). Article  CAS  Google Scholar  * García de Abajo, F. J. Optical excitations in electron microscopy. _Rev. Mod. Phys._ 82, 209–275 (2010). Article  Google


Scholar  * Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. _Nat. Phys._ 3, 348–353 (2007). Article  CAS  Google Scholar  * Collins, S. M. & Midgley, P. A.


Progress and opportunities in EELS and EDS tomography. _Ultramicroscopy_ 180, 133–141 (2017). Article  CAS  Google Scholar  * Nicoletti, O. et al. Three-dimensional imaging of localized


surface plasmon resonances of metal nanoparticles. _Nature_ 502, 80–84 (2013). Article  CAS  Google Scholar  * Dobigeon, N. & Brun, N. Spectral mixture analysis of EELS spectrum-images.


_Ultramicroscopy_ 120, 25–34 (2012). Article  CAS  Google Scholar  * Altmann, Y., McLaughlin, S. & Hero, A. Robust linear spectral unmixing using anomaly detection. _IEEE Trans. Comput.


Imaging_ 1, 74–85 (2015). Article  Google Scholar  * Bosman, M., Watanabe, M., Alexander, D. T. L. & Keast, V. J. Mapping chemical and bonding information using multivariate analysis of


electron energy-loss spectrum images. _Ultramicroscopy_ 106, 1024–1032 (2006). Article  CAS  Google Scholar  * Kalinin, S. V. et al. Separating physically distinct mechanisms in complex


infrared plasmonic nanostructures via machine learning enhanced electron energy loss spectroscopy. _Adv. Opt. Mater._ 9, 2001808 (2021). Article  CAS  Google Scholar  * Linic, S., Aslam, U.,


Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. _Nat. Mater._ 14, 567–576 (2015). Article  CAS  Google Scholar  * Mukherjee, S. et al.


Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. _J. Am. Chem. Soc._ 136, 64–67 (2014). Article  CAS  Google Scholar  * van Schrojenstein Lantman, E. M.,


Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. _Nat. Nanotechnol._ 7, 583–586


(2012). Article  Google Scholar  * Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. _Nat. Mater._ 10,


911–921 (2011). Article  CAS  Google Scholar  * Masood, H., Toe, C. Y., Teoh, W. Y., Sethu, V. & Amal, R. Machine learning for accelerated discovery of solar photocatalysts. _ACS Catal._


9, 11774–11787 (2019). Article  CAS  Google Scholar  * Martirez, J. M. P., Bao, J. L. & Carter, E. A. First-principles insights into plasmon-induced catalysis. _Annu. Rev. Phys. Chem._


72, 99–119 (2021). Article  CAS  Google Scholar  * Rück, M., Garlyyev, B., Mayr, F., Bandarenka, A. S. & Gagliardi, A. Oxygen reduction activities of strained platinum core–shell


electrocatalysts predicted by machine learning. _J. Phys. Chem. Lett._ 11, 1773–1780 (2020). Article  Google Scholar  * Chen, C. & Li, S. Z. Valence electron density-dependent


pseudopermittivity for nonlocal effects in optical properties of metallic nanoparticles. _ACS Photonics_ 5, 2295–2304 (2018). Article  Google Scholar  * Hu, W. et al. Machine learning


protocol for surface-enhanced Raman spectroscopy. _J. Phys. Chem. Lett._ 10, 6026–6031 (2019). Article  CAS  Google Scholar  * Chu, W., Saidi, W. A. & Prezhdo, O. V. Long-lived hot


electron in a metallic particle for plasmonics and catalysis: ab initio nonadiabatic molecular dynamics with machine learning. _ACS Nano_ 14, 10608–10615 (2020). Article  CAS  Google Scholar


  * Sun, B., Fernandez, M. & Barnard, A. S. Machine learning for silver nanoparticle electron transfer property prediction. _J. Chem. Inf. Model._ 57, 2413–2423 (2017). Article  CAS 


Google Scholar  * Nesfchi, M. M. et al. Fabrication of plasmonic nanoparticles/cobalt doped TiO2 nanosheets for degradation of tetracycline and modeling the process by artificial


intelligence techniques. _Mater. Sci. Semicond. Process._ 122, 105465 (2021). Article  Google Scholar  * Mikolajczyk, A. et al. A chemoinformatics approach for the characterization of hybrid


nanomaterials: safer and efficient design perspective. _Nanoscale_ 11, 11808–11818 (2019). Article  CAS  Google Scholar  * Szczerbiński, J., Gyr, L., Kaeslin, J. & Zenobi, R.


Plasmon-driven photocatalysis leads to products known from e-beam and x-ray-induced surface chemistry. _Nano Lett._ 18, 6740–6749 (2018). Article  Google Scholar  * Domulevicz, L., Jeong,


H., Paul, N. K., Gomez-Diaz, J. S. & Hihath, J. Multidimensional characterization of single-molecule dynamics in a plasmonic nanocavity. _Angew. Chem. Int. Ed._ 60, 16436–16441 (2021).


Article  CAS  Google Scholar  * Tian, C. et al. Deep learning on image denoising: an overview. _Neural Netw._ 131, 251–275 (2020). Article  Google Scholar  * Adir, O. et al. Integrating


artificial intelligence and nanotechnology for precision cancer medicine. _Adv. Mater._ 32, 1901989 (2020). Article  CAS  Google Scholar  * Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou,


H. S. Advancing biosensors with machine learning. _ACS Sens._ 5, 3346–3364 (2020). Article  CAS  Google Scholar  * Jin, X., Liu, C., Xu, T., Su, L. & Zhang, X. Artificial intelligence


biosensors: challenges and prospects. _Biosens. Bioelectron._ 165, 112412 (2020). Article  CAS  Google Scholar  * Masson, J. F. Surface plasmon resonance clinical biosensors for medical


diagnostics. _ACS Sens._ 2, 16–30 (2017). Article  CAS  Google Scholar  * Gomes, J. C. M., Souza, L. C. & Oliveira, L. C. SmartSPR sensor: machine learning approaches to create


intelligent surface plasmon based sensors. _Biosens. Bioelectron._ 172, 112760 (2021). Article  CAS  Google Scholar  * Thadson, K., Visitsattapongse, S. & Pechprasarn, S. Deep


learning-based single-shot phase retrieval algorithm for surface plasmon resonance microscope based refractive index sensing application. _Sci. Rep._ 11, 16289 (2021). Article  CAS  Google


Scholar  * Song, M. K., Chen, S. X., Hu, P. P., Huang, C. Z. & Zhou, J. Automated plasmonic resonance scattering imaging analysis via deep learning. _Anal. Chem._ 93, 2619–2626 (2021).


Article  CAS  Google Scholar  * Weng, S. Z. et al. Deep learning networks for the recognition and quantitation of surface-enhanced Raman spectroscopy. _Analyst_ 145, 4827–4835 (2020).


Article  CAS  Google Scholar  * Erzina, M. et al. Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs.


_Sens. Actuators B_308, 127660 (2020). Article  CAS  Google Scholar  * Fang, X. L. et al. Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra


and deep learning. _J. Appl. Phys._ 129, 127660 (2021). Article  Google Scholar  * Hunter, R. et al. Optofluidic label-free SERS platform for rapid bacteria detection in serum. _Sens.


Actuators B_300, 126907 (2019). Article  CAS  Google Scholar  * Lussier, F., Thibault, V., Charron, B., Wallace, G. Q. & Masson, J. F. Deep learning and artificial intelligence methods


for Raman and surface-enhanced Raman scattering. _Trends Anal. Chem._ 124, 115796 (2020). Article  CAS  Google Scholar  * Thrift, W. J. et al. Deep learning analysis of vibrational spectra


of bacterial lysate for rapid antimicrobial susceptibility testing. _ACS Nano_ 14, 15336–15348 (2020). Article  CAS  Google Scholar  * Kajendirarajah, U., Olivia Avilés, M. &


Lagugné-Labarthet, F. Deciphering tip-enhanced Raman imaging of carbon nanotubes with deep learning neural networks. _Phys. Chem. Chem. Phys._ 22, 17857–17866 (2020). Article  CAS  Google


Scholar  * Zivanovic, V. et al. Optical nanosensing of lipid accumulation due to enzyme inhibition in live cells. _ACS Nano_ 13, 9363–9375 (2019). Article  CAS  Google Scholar  * de


Albuquerque, C. D. L., Sobral-Filho, R. G., Poppi, R. J. & Brolo, A. G. Digital protocol for chemical analysis at ultralow concentrations by surface-enhanced Raman scattering. _Anal.


Chem._ 90, 1248–1254 (2018). Article  Google Scholar  * Thrift, W. J. & Ragan, R. Quantification of analyte concentration in the single molecule regime using convolutional neural


networks. _Anal. Chem._ 91, 13337–13342 (2019). Article  CAS  Google Scholar  * Thrift, W. J. et al. Surface-enhanced Raman scattering-based odor compass: locating multiple chemical sources


and pathogens. _ACS Sens._ 4, 2311–2319 (2019). Article  CAS  Google Scholar  * Smith, J. D. et al. Plasmonic anticounterfeit tags with high encoding capacity rapidly authenticated with deep


machine learning. _ACS Nano_ 15, 2901–2910 (2021). Article  CAS  Google Scholar  * LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. _Nature_ 521, 436–444 (2015). Article  CAS  Google


Scholar  * Lashgari, E., Liang, D. & Maoz, U. Data augmentation for deep-learning-based electroencephalography. _J. Neurosci. Methods_ 346, 108885 (2020). Article  Google Scholar  * Xie,


Y. et al. How to achieve auto-identification in Raman analysis by spectral feature extraction & adaptive hypergraph. _Spectrochim. Acta A_ 222, 117086 (2019). Article  CAS  Google


Scholar  * So, S., Badloe, T., Noh, J., Bravo-Abad, J. & Rho, J. Deep learning enabled inverse design in nanophotonics. _Nanophotonics_ 9, 1041–1057 (2020). Article  Google Scholar  *


Xu, X., Aggarwal, D. & Shankar, K. Instantaneous property prediction and inverse design of plasmonic nanostructures using machine learning: current applications and future directions.


_Nanomaterials_ 12, 633 (2022). Article  Google Scholar  * Kabir, H. M. D., Khosravi, A., Hosen, M. A. & Nahavandi, S. Neural network-based uncertainty quantification: a survey of


methodologies and applications. _IEEE Access_ 6, 36218–36234 (2018). Article  Google Scholar  * Jospin, L. V., Laga, H., Boussaid, F., Buntine, W. & Bennamoun, M. Hands-on bayesian


neural networks – a tutorial for deep learning users. _IEEE Comput. Intell. Mag._ 17, 29–48 (2022). Article  Google Scholar  * Deng, C., Ji, X., Rainey, C., Zhang, J. & Lu, W.


Integrating machine learning with human knowledge. _iScience_ 23, 101656 (2020). Article  Google Scholar  * Nickel, M., Murphy, K., Tresp, V. & Gabrilovich, E. A review of relational


machine learning for knowledge graphs. _Proc. IEEE_ 104, 11–33 (2016). Article  Google Scholar  * Adadi, A. & Berrada, M. Peeking inside the black-box: a survey on explainable artificial


intelligence. _IEEE Access_ 6, 52138–52160 (2018). Article  Google Scholar  * Gilpin, L. H. et al. Explaining explanations: an overview of interpretability of machine learning. In _Proc.


2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)_ 80–89 (IEEE, 2018). * Linardatos, P., Papastefanopoulos, V. & Kotsiantis, S. Explainable AI: a


review of machine learning interpretability methods. _Entropy_ 23, 18 (2021). Article  Google Scholar  * Lipton, Z. C. The mythos of model interpretability: in machine learning, the concept


of interpretability is both important and slippery. _Queue_ 16, 31–57 (2018). Article  Google Scholar  Download references ACKNOWLEDGEMENTS We acknowledge the financial support of the


Natural Science and Engineering Research Council of Canada, The Royal Society, UK, International Exchange Scheme IES\R3\203092 and UKRI Future Leaders Fellowship programme, grant number


MR/S017186/1. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Département de chimie, Quebec Center for Advanced Materials, Regroupement québécois sur les matériaux de pointe, and Centre


interdisciplinaire de recherche sur le cerveau et l’apprentissage, Université de Montréal, Montréal, Quebec, Canada Jean-Francois Masson * Engineering Department, University of Cambridge,


Cambridge, UK John S. Biggins * Department of Material Science and Metallurgy, University of Cambridge, Cambridge, UK Emilie Ringe * Department of Earth Science, University of Cambridge,


Cambridge, UK Emilie Ringe Authors * Jean-Francois Masson View author publications You can also search for this author inPubMed Google Scholar * John S. Biggins View author publications You


can also search for this author inPubMed Google Scholar * Emilie Ringe View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS


Correspondence to Jean-Francois Masson, John S. Biggins or Emilie Ringe. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. PEER REVIEW PEER REVIEW


INFORMATION _Nature Nanotechnology_ thanks Regina Ragan and Xiaonan Wang for their contribution to the peer review of this work. ADDITIONAL INFORMATION PUBLISHER’S NOTE Springer Nature


remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS Springer Nature or its licensor (e.g. a society or other


partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this


article is solely governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Masson, JF., Biggins, J.S. & Ringe,


E. Machine learning for nanoplasmonics. _Nat. Nanotechnol._ 18, 111–123 (2023). https://doi.org/10.1038/s41565-022-01284-0 Download citation * Received: 08 March 2022 * Accepted: 27 October


2022 * Published: 26 January 2023 * Issue Date: February 2023 * DOI: https://doi.org/10.1038/s41565-022-01284-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to


read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative