Multimodal in vivo brain electrophysiology with integrated glass microelectrodes

Multimodal in vivo brain electrophysiology with integrated glass microelectrodes


Play all audios:

Loading...

ABSTRACT Electrophysiology is the most used approach for the collection of functional data in basic and translational neuroscience, but it is typically limited to either intracellular or


extracellular recordings. The integration of multiple physiological modalities for the routine acquisition of multimodal data with microelectrodes could be useful for biomedical


applications, yet this has been challenging owing to incompatibilities of fabrication methods. Here, we present a suite of glass pipettes with integrated microelectrodes for the simultaneous


acquisition of multimodal intracellular and extracellular information in vivo, electrochemistry assessments, and optogenetic perturbations of neural activity. We used the integrated devices


to acquire multimodal signals from the CA1 region of the hippocampus in mice and rats, and show that these data can serve as ground-truth validation for the performance of spike-sorting


algorithms. The microdevices are applicable for basic and translational neurobiology, and for the development of next-generation brain–machine interfaces. Access through your institution Buy


or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get


Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per


year only $9.92 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during


checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IN VIVO


MICROELECTRODE ARRAYS FOR NEUROSCIENCE Article 08 May 2025 A SOFT, HIGH-DENSITY NEUROELECTRONIC ARRAY Article Open access 22 August 2023 IMPLANTABLE INTRACORTICAL MICROELECTRODES: REVIEWING


THE PRESENT WITH A FOCUS ON THE FUTURE Article Open access 05 January 2023 DATA AVAILABILITY The authors declare that all data supporting the findings of this study are available within the


paper and its Supplementary information. The raw data acquired in this study are available from the corresponding author on reasonable request. CODE AVAILABILITY The custom routines for


Matlab used in this work are available from the corresponding author. REFERENCES * Eccles, J. C. The synapse: from electrical to chemical transmission. _Ann. Rev. Neurosci._ 5, 325–339


(1982). Article  CAS  Google Scholar  * Magee, J. C. Dendritic integration of excitatory synaptic input. _Nat. Rev. Neurosci._ 1, 181–190 (2000). Article  CAS  Google Scholar  *


Schmidt-Hieber, C. & Nolan, M. F. Synaptic integrative mechanisms for spatial cognition. _Nat. Neurosci._ 20, 1483–1492 (2017). Article  CAS  Google Scholar  * Harvey, C. D., Collman,


F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. _Nature_ 461, 941–946 (2009). Article  CAS  Google Scholar  * Lee, D., Lin,


B. J. & Lee, A. K. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. _Science_ 337, 849–853 (2012). Article  CAS  Google Scholar  * Long, M.


A., Jin, D. Z. & Fee, M. S. Support for a synaptic chain model of neuronal sequence generation. _Nature_ 468, 394–399 (2010). Article  CAS  Google Scholar  * Tan, A. Y., Chen, Y.,


Scholl, B., Seidemann, E. & Priebe, N. J. Sensory stimulation shifts visual cortex from synchronous to asynchronous states. _Nature_ 509, 226–229 (2014). Article  CAS  Google Scholar  *


Petersen, C. C. H. Whole-cell recording of neuronal membrane potential during behavior. _Neuron_ 95, 1266–1281 (2017). Article  CAS  Google Scholar  * Poulet, J. F. A. & Petersen, C. C.


H. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. _Nature_ 454, 881–U836 (2008). Article  CAS  Google Scholar  * Yuste, R. From the neuron


doctrine to neural networks. _Nat. Rev. Neurosci._ 16, 487–497 (2015). Article  CAS  Google Scholar  * Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and


currents—EEG, ECoG, LFP and spikes. _Nat. Rev. Neurosci._ 13, 407–420 (2012). Article  CAS  Google Scholar  * Einevoll, G. T., Kayser, C., Logothetis, N. K. & Panzeri, S. Modelling and


analysis of local field potentials for studying the function of cortical circuits. _Nat. Rev. Neurosci._ 14, 770–785 (2013). Article  CAS  Google Scholar  * Mazzoni, A., Logothetis, N. K.


& Panzeri, S. in _Principles of Neural Coding_ (eds Quiroga, R. D. & Panzeri, S.) 411–429 (CRC Press, 2013). * Buzsáki, G. Large-scale recording of neuronal ensembles. _Nat.


Neurosci._ 7, 446–451 (2004). Article  Google Scholar  * Lewicki, M. S. A review of methods for spike sorting: the detection and classification of neural action potentials. _Network_ 9,


R53–R78 (1998). Article  CAS  Google Scholar  * Anastassiou, C. A., Perin, R., Buzsaki, G., Markram, H. & Koch, C. Cell type- and activity-dependent extracellular correlates of


intracellular spiking. _J. Neurophysiol._ 114, 608–623 (2015). Article  Google Scholar  * Chorev, E. & Brecht, M. In vivo dual intra- and extracellular recordings suggest bidirectional


coupling between CA1 pyramidal neurons. _J. Neurophysiol_ 108, 1584–1593 (2012). Article  Google Scholar  * Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H. & Buzsaki, G. Accuracy


of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. _J. Neurophysiol._ 84, 401–414 (2000). Article  CAS  Google Scholar  * Henze, D. A. et


al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. _J. Neurophysiol._ 84, 390–400 (2000). Article  CAS  Google Scholar  * Andrásfalvy, B. K. et al.


Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology. _Nat. Methods_ 11, 1237–1241 (2014). Article  Google Scholar  * Canales, A. et al.


Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. _Nat. Biotechnol._ 33, 277–284 (2015). Article  CAS  Google Scholar  *


LeChasseur, Y. et al. A microprobe for parallel optical and electrical recordings from single neurons in vivo. _Nat. Methods_ 8, 319–325 (2011). Article  CAS  Google Scholar  * Katz, Y.,


Yizhar, O., Staiger, J. & Lampl, I. Optopatcher—an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation. _J. Neurosci. Methods_ 214, 113–117


(2013). Article  Google Scholar  * Wise, K. D. et al. Microelectrodes, microelectronics, and implantable neural microsystems. _Proc. IEEE_ 96, 1184–1202 (2008). Article  CAS  Google Scholar


  * Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. _Nature_ 551, 232–236 (2017). * O’Keefe, J. & Recce, M. L. Phase relationship between


hippocampal place units and the EEG theta rhythm. _Hippocampus_ 3, 317–330 (1993). Article  Google Scholar  * Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code


for space. _Science_ 261, 1055–1058 (1993). Article  CAS  Google Scholar  * Felix, S. H. et al. Insertion of flexible neural probes using rigid stiffeners attached with biodissolvable


adhesive. _J. Vis. Exp._ 79, e50609 (2013). * Fu, T. M. et al. Stable long-term chronic brain mapping at the single-neuron level. _Nat. Methods_ 13, 875–882 (2016). Article  CAS  Google


Scholar  * Stieglitz, T., Beutel, H., Schuettler, M. & Meyer, J. U. Micromachined, polyimide-based devices for flexible neural interfaces. _Biomed. Microdevices_ 2, 283–294 (2000).


Article  Google Scholar  * Robinson, D. A. The electrical properties of metal microelectrodes. _Proc. IEEE_ 56, 1065–1071 (1968). Article  CAS  Google Scholar  * Madisen, L. et al. A toolbox


of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. _Nat. Neurosci._ 15, 793–802 (2012). Article  CAS  Google Scholar  * Robinson, D. L., Venton, B. J.,


Heien, M. L. A. V. & Wightman, R. M. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. _Clin. Chem._ 49, 1763–1773 (2003). Article  CAS  Google Scholar  *


Hamid, A. A. et al. Mesolimbic dopamine signals the value of work. _Nat. Neurosci._ 19, 117–126 (2016). Article  CAS  Google Scholar  * Lebedev, M. A. & Nicolelis, M. A. Brain-machine


interfaces: past, present and future. _Trends Neurosci._ 29, 536–546 (2006). Article  CAS  Google Scholar  * Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in


hippocampal CA1 neurons. _Nat. Neurosci._ 18, 1133–1142 (2015). Article  CAS  Google Scholar  * Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral


time scale synaptic plasticity underlies CA1 place fields. _Science_ 357, 1033–1036 (2017). Article  CAS  Google Scholar  * Izhikevich, E. M., Desai, N. S., Walcott, E. C. &


Hoppensteadt, F. C. Bursts as a unit of neural information: selective communication via resonance. _Trends Neurosci._ 26, 161–167 (2003). Article  CAS  Google Scholar  * Li, C. Y. T., Poo,


M. M. & Dan, Y. Burst spiking of a single cortical neuron modifies global brain state. _Science_ 324, 643–646 (2009). Article  CAS  Google Scholar  * Lisman, J. E. Bursts as a unit of


neural information: making unreliable synapses reliable. _Trends Neurosci._ 20, 38–43 (1997). Article  CAS  Google Scholar  * Rey, H. G., Pedreira, C. & Quiroga, R. Q. Past, present and


future of spike sorting techniques. _Brain Res. Bull._ 119, 106–117 (2015). Article  Google Scholar  * Neto, J. P. et al. Validating silicon polytrodes with paired juxtacellular recordings:


method and dataset. _J. Neurophysiol._ 116, 892–903 (2016). Article  CAS  Google Scholar  * Wild, J., Prekopcsak, Z., Sieger, T., Novak, D. & Jech, R. Performance comparison of


extracellular spike sorting algorithms for single-channel recordings. _J. Neurosci. Methods_ 203, 369–376 (2012). Article  Google Scholar  * Quiroga, R. Q., Nadasdy, Z. & Ben-Shaul, Y.


Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. _Neural Comput._ 16, 1661–1687 (2004). Article  Google Scholar  * Kadir, S. N., Goodman, D. F. &


Harris, K. D. High-dimensional cluster analysis with the masked EM algorithm. _Neural Comput._ 26, 2379–2394 (2014). Article  Google Scholar  * Anastassiou, C. A., Perin, R., Markram, H.


& Koch, C. Ephaptic coupling of cortical neurons. _Nat. Neurosci._ 14, 217–223 (2011). Article  CAS  Google Scholar  * Holt, G. R. & Koch, C. Electrical interactions via the


extracellular potential near cell bodies. _J. Comput. Neurosci._ 6, 169–184 (1999). Article  CAS  Google Scholar  * Barbic, M., Moreno, A., Harris, T. D. & Kay, M. W. Detachable glass


microelectrodes for recording action potentials in active moving organs. _Am. J. Physiol. Heart Circ. Physiol._ 312, H1248–H1259 (2017). Article  Google Scholar  * Lee, A. K., Epsztein, J.


& Brecht, M. Head-anchored whole-cell recordings in freely moving rats. _Nat. Protoc._ 4, 385–392 (2009). Article  CAS  Google Scholar  * Long, M. A. & Lee, A. K. Intracellular


recording in behaving animals. _Curr. Opin. Neurobiol._ 22, 34–44 (2012). Article  CAS  Google Scholar  * Margrie, T. W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell


recordings from neurons in the anaesthetized and awake mammalian brain. _Pflügers Arch._ 444, 491–498 (2002). Article  CAS  Google Scholar  * Vreeland, R. F. et al. Biocompatible PEDOT:


Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. _Anal. Chem._ 87, 2600–2607 (2015). Article  CAS  Google Scholar  * Atta, N. F., Galal, A. &


Ahmed, R. A. Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate. _Bioelectrochemistry_ 80, 132–141 (2011). Article


  CAS  Google Scholar  * Tang, H., Lin, P., Chan, H. L. W. & Yan, F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. _Biosens. Bioelectron._ 26,


4559–4563 (2011). Article  CAS  Google Scholar  * Hunt, D. L., Linaro, D., Si, B., Romani, S. & Spruston, N. A novel pyramidal cell type promotes sharp-wave synchronization in the


hippocampus. _Nat. Neurosci._ 21, 985–995 (2018). Article  CAS  Google Scholar  * Cui, X. Y. & Martin, D. C. Electrochemical deposition and characterization of


poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. _Sens. Actuators B_ 89, 92–102 (2003). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We would like


thank A. Pais, D. Lee, V. Reddy, H. Esmailbeigi, B. Bowers, B. Biddle, J. Macklin, R. Patel, W. Sun, B. Barbarits, J. Venton, E. Privman, P. Ahamad and L. Coddington for their valuable


contributions to this study. We would also like to thank J. Markara and B. Andrasfalvy for helpful discussions. This work was supported by the Howard Hughes Medical Institute. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA David L. Hunt, Chongxi Lai, Richard D. Smith, Albert K. Lee, Timothy D.


Harris & Mladen Barbic Authors * David L. Hunt View author publications You can also search for this author inPubMed Google Scholar * Chongxi Lai View author publications You can also


search for this author inPubMed Google Scholar * Richard D. Smith View author publications You can also search for this author inPubMed Google Scholar * Albert K. Lee View author


publications You can also search for this author inPubMed Google Scholar * Timothy D. Harris View author publications You can also search for this author inPubMed Google Scholar * Mladen


Barbic View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS D.L.H., A.K.L., T.D.H. and M.B. conceived the project. T.D.H. supervised the


project. M.B. developed and fabricated all multimodal devices. A.K.L. and M.B. aquired data with the Patch-Tritrode. D.L.H. and C.L. analysed the Patch-Tritrode data. D.L.H. and M.B. aquired


data with the Patch-Silvertrode. D.L.H. analysed the Patch-Silvertrode data. R.D.S. and M.B. aquired Patch-Carbontrode data. D.L.H. and R.D.S. analysed the Patch-Carbontrode data. D.L.H.


and M.B. wrote the manuscript with input from all authors. CORRESPONDING AUTHORS Correspondence to David L. Hunt or Mladen Barbic. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare


no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary figures. REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Hunt, D.L.,


Lai, C., Smith, R.D. _et al._ Multimodal in vivo brain electrophysiology with integrated glass microelectrodes. _Nat Biomed Eng_ 3, 741–753 (2019). https://doi.org/10.1038/s41551-019-0373-8


Download citation * Received: 17 April 2018 * Accepted: 21 February 2019 * Published: 01 April 2019 * Issue Date: September 2019 * DOI: https://doi.org/10.1038/s41551-019-0373-8 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative