On thermal dehydrochlorination of model compounds for pvc iv. Mo study of the catalytic effect of hydrogen chloride
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT The energy of stabilization of the transition due to the split-off molecules of HCl has been calculated for the elimination of HCl from ethyl chloride by using semiempirical
methods. The analysis of the character of the energy of stabilization has shown that the electrostatic and delocalization interactions in the system are mainly responsible for the magnitude
of this stabilization energy. The more polar the model of the transition state is supposed to be, the greater will be the value of the stabilization energy. Using this model, the catalytic
effect of HCl on the destruction of poly(vinyl chloride) with an ideal structure can be described. The analogous catalytic effect on the elimination of HCl from defect structures of
poly(vinyl chloride) is also discussed. Transition-state stabilization can explain the experimentally found decrease of activation energy of dehydrochlorination. SIMILAR CONTENT BEING VIEWED
BY OTHERS STRUCTURAL REACTIVITY RELATIONSHIP AND THERMOKINETIC INVESTIGATION OF OXIDATION OF SUBSTITUTED ANILINES BY IRIDIUM (IV) IN SOLUTION MEDIA Article Open access 24 March 2025
COMPUTATIONAL STUDY OF THE UNIMOLECULAR AND BIMOLECULAR DECOMPOSITION MECHANISMS OF PROPYLAMINE Article Open access 16 July 2020 A NEW TYPE OF C+⋯HΔ−(C=) BOND IN ADDUCTS OF VINYL
CARBOCATIONS WITH ALKENES Article Open access 10 April 2024 ARTICLE PDF REFERENCES * L. Valko and I. Tvaroška, _Eur. Polym. J._, 7, 41 (1971). * I. Tvaroška, V. Klimo, and L. Valko,
_Tetrahedron_, in press. * D. Druesedov, and C. F. Gibbs, _Nat. Bul. Std. Circular_, 525, 69 (1953) * E. J. Arlman, _J. Polym. Sci._, 12, 547 (1954). * A. Reiche, A. Grimm, and H. Mücke,
_Kunststoffe_, 52, 265 (1962). * G. Talamini, G. Cinque, and G. Plama, _Materie Plast Elast._, 30, 317 (1964). * W. C. Geddes, _Eur. Polym. J._, 3, 267 (1967). * G. C. Marks, J. L. Benton,
and C. M. Thomas, _S.C.I. Monogr._, 26, 204 (1967). * G. A. Razuvaev, L. S. Troitskaya, and B. B. Troitskij, _J. Polym. Sci._, 9, 2673 (1971). * M. Luther and H. Krüger, _Kunststoffe_, 56,
74 (1966). * L. S. Troitskaya, N. V. Maykov, B. B. Troitskij, and G. A. Razuvaev, _Vysokomol. Soedin., Ser. A_, 9, 2119 (1967). * D. Braun and R. F. Bender, _Eur. Polym. J., Suppl._, 269
(1969). * J. H. L. Henson and F. J. Hybart, _J. Appl. Polym. Sci._, 16, 1653 (1972). * J. N. Hay, _J. Polym. Sci._, 8, 1201 (1970). * D. H. Davies, D. H. Everet, and D. J. Traylor, _Trans.
Faraday Soc._, 67, 382 (1971). * S. van der Ven and V. F. de Witt, _Angew. Makromol. Chem._, 8, 143 (1969). * W. Gordy and R. L. Cook, “_Microwave Molecular Spectra_,” Wiley-Interscience,
London, 1970. Google Scholar * J. A. Pople and D. L. Beveridge, “_Approximate Molecular Orbital Theory_,” McGraw-Hill, New York, N.Y, 1970. Google Scholar * A. Goursot-Leray and H. Bodot,
_Tetrahedron_, 27, 2133 (1971). * L. Bartelt, _J. Chem. Phys._, 32, 827 (1960). * R. A. Scott and H. A. Scheraga, _J. Chem. Phys._, 42, 2209 (1965). * S. N. Benson and G. R. Haugen, _J. Am.
Chem. Soc._, 87, 4036 (1965). * J. C. Hasler and D. N. Setser, _J. Chem. Phys._, 45, 3246 (1966). * C. P. Smyth, “_Dielectric Behaviour and Structure_,” McGraw-Hill, New York, N.Y., 1965.
Google Scholar * M. S. Gordon, _J. Am. Chem. Soc._, 91, 3132 (1969). * H. Fischer and H. Kollmar, _Theor. Chim. Acta_, 16, 163 (1970). * K. Fukui, _Top. Current Chem._, 15, 1 (1970). * R.
S. Mulliken, _J. Chem. Phys._, 23, 1833 (1955). * R. S. Mulliken, _J. Chem. Phys._, 23, 1841 (1955). * R. S. Mulliken, _J. Chem. Phys._, 23, 2338 (1955). * R. S. Mulliken, _J. Chem. Phys._,
23, 2343 (1955). * M. Carenza, Yu. V. Moiseev, and G. Palma, _J. Appl. Polym. Sci._, 17, 2685 (1973). * R. A. Pankov and V. S. Pudov, _Vysokomol. Soedin._, 15, 961 (1973). * L. Valko and I.
Tvaroška, _Angew. Makromol. Chem._, 23, 173 (1972). * K. S. Minsker and G. T. Fedoseeva, “_Destrukcia i stabilizacia polivinilchlorida_,” Chimiia, Moskva, 1972. Google Scholar Download
references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Institute of Chemistry of the Slovak Academy of Sciences, I Tvaroška * Polymer Institute of the Slovak Academy of Sciences, T Bleha *
Department of Physical Chemistry of the Slovak Technical University, L Valko Authors * I Tvaroška View author publications You can also search for this author inPubMed Google Scholar * T
Bleha View author publications You can also search for this author inPubMed Google Scholar * L Valko View author publications You can also search for this author inPubMed Google Scholar
RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Tvaroška, I., Bleha, T. & Valko, L. On Thermal Dehydrochlorination of Model Compounds for PVC IV. MO
Study of the Catalytic Effect of Hydrogen Chloride. _Polym J_ 7, 34–43 (1975). https://doi.org/10.1295/polymj.7.34 Download citation * Issue Date: 01 January 1975 * DOI:
https://doi.org/10.1295/polymj.7.34 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently
available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * PVC Model Compounds * Thermal Dehydrochlorination * Transition
State Theory * Stabilization Energy * Frontier Molecular Orbitals * MO Theory