Identifying two ancient enzymes in archaea using predicted secondary structure alignment

Identifying two ancient enzymes in archaea using predicted secondary structure alignment


Play all audios:

Loading...

ABSTRACT It is now possible to compare life forms at high levels of detail and completeness due to the increasing availability of whole genomes from all three domains. However, exploration


of interesting hypotheses requires the ability to recognize a correspondence between proteins that may since have diverged beyond the threshold of detection by sequence-based methods. Since


protein structure is far better conserved than protein sequence, structural information can enhance detection sensitivity, and this is the basis for the field of structural genomics.


Demonstrating the effectiveness of this approach, we identify two important but previously elusive Archaeal enzymes: a homolog of dihydropteroate synthase and a thymidylate synthase. The


former is especially noteworthy in that no Archaeal homolog of a bacterial folate biosynthetic enzyme has been found to date. Experimental confirmation of the deduced activity of both


enzymes is described. Identification of two different proteins was attempted deliberately to help allay concern that predictive success is merely a lucky accident. Access through your


institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print


issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to


local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT


BEING VIEWED BY OTHERS EXPANDED DIVERSITY OF ASGARD ARCHAEA AND THEIR RELATIONSHIPS WITH EUKARYOTES Article 28 April 2021 PROTEOME-WIDE 3D STRUCTURE PREDICTION PROVIDES INSIGHTS INTO THE


ANCESTRAL METABOLISM OF ANCIENT ARCHAEA AND BACTERIA Article Open access 21 December 2022 THE ORIGIN AND RADIATION OF THE PHOSPHOPROTEIN PHOSPHATASE (PPP) ENZYMES OF EUKARYOTES Article Open


access 01 July 2021 REFERENCES * Aurora, R. & Rose, G.D. _Proc. Natl. Acad. Sci. USA_ 95, 2818–2823 (1998). Article  CAS  Google Scholar  * Bult, C.J. et al. _Science_ 273, 1058–1073


(1997). Article  Google Scholar  * Smith, D.R. et al. _J. Bacteriol._ 179,7135–7155 (1997). Article  CAS  Google Scholar  * Klenk, H.P. et al. _Nature_ 390, 364–370 (1997). Article  CAS 


Google Scholar  * Garnier, J. & Robson, B. In _The Development of the prediction of protein structure_ (ed. Fasman, G.) 417–465 (Plenum, New York; 1989). Google Scholar  * Aurora, R.


& Rose, G.D. _Protein Sci._ 7, 21–38 (1998). Article  CAS  Google Scholar  * Needleman, S.B. & Wunsch, C.D. _J. Mol. Biol._ 48, 443–453 (1970). Article  CAS  Google Scholar  * White,


R.H. _Biochemistry_ 32, 745–753 (1993). Article  CAS  Google Scholar  * Keltjens, J.T., Huberts, M.J., Laarhoven, W.H. & Vogels, G.D. _Eur. J. Biochem._ 130, 537–544 (1983). Article 


CAS  Google Scholar  * DiMarco, A.A., Bobik, T.A. & Wolfe, R.S. _Annu. Rev. Biochem._ 59, 355–394 (1990). Article  CAS  Google Scholar  * Keltjens, J.T., Raemakers-Franken, P.C. &


Vogels, G.D. In _Microb. Growth C1 Compd._ [7th Int. Sym.] 135–150 (Intercept, Andover, UK; 1993). Google Scholar  * Leigh, J.A. _Appl. Environ. Microbiol._ 45, 800–803 (1983). CAS  PubMed 


PubMed Central  Google Scholar  * Green, J.M., Nichols, B.P. & Matthews, R.G. In _Escherichia coli and Salmonella, Cellular and Molecular biology._ (ed. Neidhardt, F.C.) 665–673


(American Society for Microbiology; 1996). Google Scholar  * White, R.H. _Biochemistry_ 35, 3447–3456 (1996). Article  CAS  Google Scholar  * White, R.H. _Biochemistry_ 29, 5397–5404 (1990).


Article  CAS  Google Scholar  * Howell, D.M. & White, R.H. _J. Bacteriol._ 179, 5165–5170 (1997). Article  CAS  Google Scholar  * Myers, E.W. & Miller, W. _Bull. Math. Biol._ 51,


5–37 (1989). Article  CAS  Google Scholar  * Achari, A. et al. _Nature Struct. Biol._ 4, 490–497 (1997). Article  CAS  Google Scholar  * Hampele, I.C. et al. _J. Mol. Biol._ 268, 21–30


(1997). Article  CAS  Google Scholar  * Bernstein, F.C. et al. _J. Mol. Biol._ 112, 535–542 (1977). Article  CAS  Google Scholar  * Altschul, S.F. et al. _Nucleic Acids Res._ 25, 3389–3402


(1997). Article  CAS  Google Scholar  * White, R.H. _Methods Enzymol._ 44, 391–401 (1997). Article  Google Scholar  * Shiota, T. In _Folates and pterins, Vol. 1, chemistry and biochemistry


of folates_ (eds Blakley, R.L. & Benkovic, S.J.) 121 (John Wiley & Sons, New York; 1984). Google Scholar  * White, R.H. _J. Bacteriol._ 162, 516–520 (1985). CAS  PubMed  PubMed


Central  Google Scholar  * Perry, K.M. et al. _Proteins_, 8, 315–333 (1990). Article  CAS  Google Scholar  * Nyce, G.W. & White, R.H. _J. Bacteriol._ 178, 914–916 (1996). Article  CAS 


Google Scholar  * Krone, U.E., McFarlan, S.C. & Hognekamp, H.P.C. _Eur. J. Biochem._ 220, 789–794 (1994). Article  CAS  Google Scholar  * Vaupel, M., Dietz, H., Linder, D. & Thauer,


R.K. _Eur. J. Biochem._ 236, 294–300 (1996). Article  CAS  Google Scholar  * Priest, D.G. & Doig, M.T. _Methods Enzymol._ 122, 313–319 (1986). Article  CAS  Google Scholar  * Holm, L.


& Sander, C. _Science_ 273, 595–603 (1996). Article  CAS  Google Scholar  * Doolittle, R.F. _Annu. Rev. Biochem._ 64, 287–314 (1995). Article  CAS  Google Scholar  * Gibrat, J., Madej,


T. & Bryant, S.H. _Curr. Opin. Struct. Biol._ 6, 377–385 (1996). Article  CAS  Google Scholar  * Zhou, D. & White, R.H. _J. Bacteriol._ 174, 4576–4582 (1992). Article  CAS  Google


Scholar  * Myers, E and Miller W. _Comput. Appl. Biosci._ 4, 11–17 (1988). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS Supported by a National Science Foundation grant


to R.H.W. and a National Institutes of Health grant to G.D.R. We thank M.E. Rasche for running the experiments to trap the covalent complex between FdUMP and thymidylate synthase, K. Harich


for preforming the GC-MS analyses, and D. Grahame for supplying the [_methyl_-3H]-methyl-tetrahydrosarcinapterin. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biochemistry,


Virginia Polytechnic Institute and State University, Blacksburg, 24061-0308, Virginia, USA Huimin Xu & Robert H. White * Monsanto Company, Mail Zone AA3G, 700 Chesterfield Parkway North,


St. Louis, 63198, Missouri, USA Rajeev Aurora * Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, 21205,


Maryland, USA George D. Rose Authors * Huimin Xu View author publications You can also search for this author inPubMed Google Scholar * Rajeev Aurora View author publications You can also


search for this author inPubMed Google Scholar * George D. Rose View author publications You can also search for this author inPubMed Google Scholar * Robert H. White View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Robert H. White. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Xu, H., Aurora, R., Rose, G. _et al._ Identifying two ancient enzymes in Archaea using predicted secondary structure alignment. _Nat Struct Mol Biol_ 6, 750–754


(1999). https://doi.org/10.1038/11525 Download citation * Received: 18 November 1998 * Accepted: 13 May 1999 * Issue Date: August 1999 * DOI: https://doi.org/10.1038/11525 SHARE THIS ARTICLE


Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative