Synaptic versus extrasynaptic nmda receptor signalling: implications for neurodegenerative disorders

Synaptic versus extrasynaptic nmda receptor signalling: implications for neurodegenerative disorders


Play all audios:

Loading...

KEY POINTS * NMDARs (_N_-methyl-D-aspartate receptors) have long been known for their role in neuropathology, and inappropriate activity is implicated in neuronal loss in acute disorders


such as stroke and traumatic brain injury. Certain chronic neurodegenerative diseases are also associated with abnormal NMDAR activity, including Huntington's and Alzheimer's


diseases. However, the destructive effects of NMDAR activity are in striking contrast to the observation that the survival and resistance to trauma of several neuronal types is boosted by


physiological synaptic NMDAR activity and function. Thus, there is a dichotomy of NMDAR signalling. * Recent studies have shown that cellular responses to NMDAR activation can depend on the


receptor location. Activation of synaptic NMDARs, particularly when activated trans-synaptically, promotes neuronal health, whereas chronic activation of extrasynaptic NMDARs couples to cell


death pathways. Differences are observed even when the overall Ca2+ loads triggered via the two routes are similar. * Synaptic NMDAR activity strongly promotes neuronal health by initiating


a programme of transcriptional changes that promote resistance to various traumatic stimuli. Synaptic NMDARs control a nuclear Ca2+-regulated multi-gene program that protects against


excitotoxic and apoptotic insults. Transcriptional suppression of key components of the intrinsic apoptosis pathway also restricts the apoptotic potential of neurons. Moreover, synaptic


NMDAR activity promotes resistance to oxidative insults by boosting intrinsic antioxidant defences through transcriptional changes of proteins encoding antioxidant genes and regulatory


factors. * Extrasynaptic NMDAR activity is coupled to several signalling pathways that promote neuronal death or vulnerability to trauma. These include the dephosphorylation and inactivation


of the pro-survival transcription factor cyclic-AMP response element binding protein (CREB), nuclear import of the pro-death transcription factor forkhead box protein O (FOXO), inactivation


of extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein (MAP) kinase, and calpain-dependent striatal enriched tyrosine phosphatase (STEP) cleavage and activation of


p38 MAP kinase. * A shift in the balance from synaptic towards extrasynaptic NMDAR signalling may be an important factor in the aetiology of neurodegenerative diseases. In Huntington's


disease, mutant huntingtin causes a specific increase in extrasynaptic NMDAR currents. Furthermore, extrasynaptic NMDAR activity in turn promotes the toxicity of mutant huntingtin and


synaptic NMDAR activity reduces mutant huntingtin toxicity by promoting the formation of non-toxic inclusions. In acute ischaemic trauma, cell death may be caused in part by an upregulation


and activation of extrasynaptic NMDARs * In treating disorders associated with abnormal NMDAR activity, therapies aimed at selectively blocking chronic extrasynaptic NMDAR activity without


interfering with normal synaptic NMDAR activity may be better tolerated and more efficacious than conventional antagonists. The NMDAR antagonist memantine is well suited to this role, which


may explain its tolerance in humans and its recently demonstrated efficacy in preclinical models of Huntington's disease. ABSTRACT There is a long-standing paradox that NMDA


(_N_-methyl-D-aspartate) receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation


of synaptic NMDARs, acting primarily through nuclear Ca2+ signalling, leads to the build-up of a neuroprotective 'shield', whereas stimulation of extrasynaptic NMDARs promotes cell


death. These differences result from the activation of distinct genomic programmes and from opposing actions on intracellular signalling pathways. Perturbations in the balance between


synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington's disease, and could be a common theme in the aetiology of


neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling. Access through


your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12


print issues and online access $189.00 per year only $15.75 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be


subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR


CONTENT BEING VIEWED BY OTHERS NON-CANONICAL INTERPLAY BETWEEN GLUTAMATERGIC NMDA AND DOPAMINE RECEPTORS SHAPES SYNAPTOGENESIS Article Open access 02 January 2024 MOLECULAR MECHANISMS OF


EXCITOTOXICITY AND THEIR RELEVANCE TO THE PATHOGENESIS OF NEURODEGENERATIVE DISEASES—AN UPDATE Article Open access 19 May 2025 ENHANCING GLUN2A-TYPE NMDA RECEPTORS IMPAIRS LONG-TERM SYNAPTIC


PLASTICITY AND LEARNING AND MEMORY Article 28 April 2022 REFERENCES * Aamodt, S. M. & Constantine-Paton, M. The role of neural activity in synaptic development and its implications for


adult brain function. _Adv. Neurol._ 79, 133–144 (1999). CAS  PubMed  Google Scholar  * Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the


hippocampus. _Nature_ 361, 31–39 (1993). Article  CAS  PubMed  Google Scholar  * Tovar, K. R. & Westbrook, G. L. The incorporation of NMDA receptors with a distinct subunit composition


at nascent hippocampal synapses _in vitro_. _J. Neurosci._ 19, 4180–4188 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rosenmund, C., Feltz, A. & Westbrook, G. L.


Synaptic NMDA receptor channels have a low open probability. _J. Neurosci._ 15, 2788–2795 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar  * Cottrell, J. R., Dube, G. R., Egles,


C. & Liu, G. Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. _J. Neurophysiol._ 84, 1573–1587 (2000).


Article  CAS  PubMed  Google Scholar  * Petralia, R. S. et al. Organization of NMDA receptors at extrasynaptic locations. _Neuroscience_ 167, 68–87 (2010). Article  CAS  PubMed  Google


Scholar  * Rusakov, D. A. & Kullmann, D. M. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. _J. Neurosci._ 18,


3158–3170 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Massey, P. V. et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term


potentiation and long-term depression. _J. Neurosci._ 24, 7821–7828 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhao, J. P. & Constantine-Paton, M. NR2A−/− mice lack


long-term potentiation but retain NMDA receptor and L-type Ca2+ channel-dependent long-term depression in the juvenile superior colliculus. _J. Neurosci._ 27, 13649–13654 (2007). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Lucas, D. R. & Newhouse, J. P. The toxic effect of sodium L-glutamate on the inner layers of the retina. _AMA Arch. Ophthalmol._ 58,


193–201 (1957). Article  CAS  PubMed  Google Scholar  * Curtis, D. R., Phillis, J. W. & Watkins, J. C. Chemical excitation of spinal neurones. _Nature_ 183, 611–612 (1959). Article  CAS


  PubMed  Google Scholar  * Olney, J. W. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. _Science_ 164, 719–721 (1969). Article  CAS  PubMed  Google


Scholar  * Choi, D. W. Ionic dependence of glutamate neurotoxicity. _J. Neurosci._ 7, 369–379 (1987). IN ONE OF SEVERAL SEMINAL CONTRIBUTIONS TO THE FIELD, CHOI DEMONSTRATED THAT AN


EXCITOTOXIC INSULT TRIGGERS TEMPORALLY DISTINCT PHASES OF INJURY: ACUTE NA+-DEPENDENT SWELLING AND MORE DELAYED CA2+-DEPENDENT INJURY. HE SHOWED THAT THE CA2+-DEPENDENT MECHANISM DOMINATES


AT MODEST INSULT INTENSITY, AND DISCUSSED THE POTENTIAL ROLE OF NMDARS IN THIS PROCESS. Article  CAS  PubMed  PubMed Central  Google Scholar  * Choi, D. W., Maulucci-Gedde, M. &


Kriegstein, A. R. Glutamate neurotoxicity in cortical cell culture. _J. Neurosci._ 7, 357–368 (1987). Article  CAS  PubMed  PubMed Central  Google Scholar  * Choi, D. W., Koh, J. Y. &


Peters, S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. _J. Neurosci._ 8, 185–196 (1988). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Tymianski, M., Charlton, M. P., Carlen, P. L. & Tator, C. H. Source specificity of earlly calcium neurotoxicity in cultures embryonic spinal neurons. _J. Neurosci._ 13,


2085–2104 (1993). THIS PAPER WAS THE FIRST TO SHOW THAT CA2+-MEDIATED EXCITOTOXICITY WAS 'SOURCE SPECIFIC'. IT WAS SHOWN THAT CA2+ INFLUX THROUGH BATH-ACTIVATION OF NMDARS WAS MORE


EFFECTIVE AT KILLING NEURONS THAN CA2+ INFLUX THROUGH VOLTAGE-GATED CA2+ CHANNELS, TAKING INTO ACCOUNT OVERALL CA2+ LOAD. Article  CAS  PubMed  PubMed Central  Google Scholar  * Rothman, S.


M. & Olney, J. W. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. _Ann. Neurol._ 19, 105–111 (1986). Article  CAS  PubMed  Google Scholar  * Choi, D. W. Glutamate


neurotoxicity and diseases of the nervous system. _Neuron_ 1, 623–634 (1988). Article  CAS  PubMed  Google Scholar  * Lipton, S. A. & Rosenberg, P. A. Excitatory amino acids as a final


common pathway for neurologic disorders. _N. Engl. J. Med._ 330, 613–621 (1994). Article  CAS  PubMed  Google Scholar  * Arundine, M. & Tymianski, M. Molecular mechanisms of


glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. _Cell. Mol. Life Sci._ 61, 657–668 (2004). Article  CAS  PubMed  Google Scholar  * Dawson, T. M., Zhang, J.,


Dawson, V. L. & Snyder, S. H. Nitric oxide: cellular regulation and neuronal injury. _Prog. Brain Res._ 103, 365–369 (1994). Article  CAS  PubMed  Google Scholar  * Camacho, A. &


Massieu, L. Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. _Arch. Med. Res._ 37, 11–18 (2006). Article  CAS 


PubMed  Google Scholar  * Fan, M. M. & Raymond, L. A. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease. _Prog. Neurobiol._ 81, 272–293


(2007). Article  CAS  PubMed  Google Scholar  * Kalia, L. V., Kalia, S. K. & Salter, M. W. NMDA receptors in clinical neurology: excitatory times ahead. _Lancet Neurol._ 7, 742–755


(2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ikonomidou, C. & Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?


_Lancet Neurol._ 1, 383–386 (2002). Article  CAS  PubMed  Google Scholar  * Hetman, M. & Kharebava, G. Survival signaling pathways activated by NMDA receptors. _Curr. Top. Med. Chem._ 6,


787–799 (2006). Article  CAS  PubMed  Google Scholar  * Hardingham, G. E. Pro-survival signalling from the NMDA receptor. _Biochem. Soc. Trans._ 34, 936–938 (2006). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Gould, E., Cameron, H. A. & McEwen, B. S. Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus. _J. Comp.


Neurol._ 340, 551–565 (1994). Article  CAS  PubMed  Google Scholar  * Ikonomidou, C. et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. _Science_ 283,


70–74 (1999). THIS STUDY PROVIDED AN ELEGANT DEMONSTRATION OF THE WIDESPREAD VULNERABILITY OF THE DEVELOPING NERVOUS SYSTEM TO NMDAR BLOCKADE. SUBSEQUENT STUDIES WOULD CHARACTERIZE THE


EFFECT OF NMDAR BLOCKADE IN THE MATURE CNS AND THE EXTENT TO WHICH NMDAR BLOCKADE EXACERBATES NEURONAL LOSS FOLLOWING INJURY OF METABOLIC INHIBITION. Article  CAS  PubMed  Google Scholar  *


Pohl, D. et al. NMDA antagonists and apoptotic cell death triggered by head trauma in developing rat brain. _Proc. Natl Acad. Sci. USA_ 96, 2508–2513 (1999). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Monti, B. & Contestabile, A. Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat


cerebellum. _Eur. J. Neurosci._ 12, 3117–3123 (2000). Article  CAS  PubMed  Google Scholar  * Adams, S. M., de Rivero Vaccari, J. C. & Corriveau, R. A. Pronounced cell death in the


absence of NMDA receptors in the developing somatosensory thalamus. _J. Neurosci._ 24, 9441–9450 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ikonomidou, C., Stefovska, V.


& Turski, L. Neuronal death enhanced by N-methyl-D-aspartate antagonists. _Proc. Natl Acad. Sci. USA_ 97, 12885–12890 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Tashiro, A., Sandler, V. M., Toni, N., Zhao, C. & Gage, F. H. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. _Nature_ 442, 929–933 (2006).


Article  CAS  PubMed  Google Scholar  * Lipton, S. A. & Kater, S. B. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. _Trends Neurosci._ 12, 265–270 (1989).


Article  CAS  PubMed  Google Scholar  * Lipton, S. A. & Nakanishi, N. Shakespeare in Love - with NMDA receptors? _Nature Med._ 5, 270–271 (1999). Article  CAS  PubMed  Google Scholar  *


Hardingham, G. E. & Bading, H. The Yin and Yang of NMDA receptor signalling. _Trends Neurosci._ 26, 81–89 (2003). Article  CAS  PubMed  Google Scholar  * Hardingham, G. E., Fukunaga, Y.


& Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. _Nature Neurosci._ 5, 405–414 (2002). THE CONCEPT THAT SIGNALLING RESULTING


FROM SYNAPTIC AND EXTRASYNAPTIC NMDAR ACTIVATION IS LINKED TO SURVIVAL AND DEATH, RESPECTIVELY, WAS FIRST SHOWN HERE. Article  CAS  PubMed  Google Scholar  * Leveille, F. et al. Neuronal


viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. _FASEB J._ 22, 4258–4271 (2008). Article  CAS  PubMed  Google Scholar  * Stanika, R. I. et


al. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. _Proc. Natl Acad. Sci. USA_ 106, 9854–9859 (2009). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Ivanov, A. et al. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the ERK activity in cultured rat hippocampal neurons. _J. Physiol._


572, 789–798 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, S. J. et al. Decoding NMDA Receptor Signaling: identification of genomic programs specifying neuronal


survival and death. _Neuron_ 53, 549–562 (2007). Article  CAS  PubMed  Google Scholar  * Papadia, S. et al. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. _Nature


Neurosci._ 11, 476–487 (2008). Article  CAS  PubMed  Google Scholar  * Okamoto, S. et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and


neurotoxicity of mutant huntingtin. _Nature Med._ 15, 1407–1413 (2009). THIS PAPER DEMONSTRATED THAT THE BALANCE BETWEEN SYNAPTIC AND EXTRASYNAPTIC NMDAR SIGNALLING CONTROLS THE FORMATION OF


MUTANT HUNTINGTIN INCLUSIONS, NEUROTOXICITY, AND DISEASE SEVERITY AND PROGRESSION IN MODELS OF HUNTINGTON'S DISEASE. IT ALSO SHOWED THE THERAPEUTIC BENEFIT OF TARGETING EXTRASYNAPTIC


NMDAR ACTIVATION PHARMACALOGICALLY (WITH LOW-DOSE MEMANTINE). Article  CAS  PubMed  Google Scholar  * Soriano, F. X. et al. Preconditioning doses of NMDA promote neuroprotection by enhancing


neuronal excitability. _J. Neurosci._ 26, 4509–4518 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Isacson, O. On neuronal health. _Trends Neurosci._ 16, 306–308 (1993).


Article  CAS  PubMed  Google Scholar  * Papadia, S., Stevenson, P., Hardingham, N. R., Bading, H. & Hardingham, G. E. Nuclear Ca2+ and the cAMP response element-binding protein family


mediate a late phase of activity-dependent neuroprotection. _J. Neurosci._ 25, 4279–4287 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Morgan, J. I., Cohen, D. R.,


Hempstead, J. L. & Curran, T. Mapping patterns of c-fos expression in the central nervous system after seizure. _Science_ 237, 192–197 (1987). Article  CAS  PubMed  Google Scholar  *


Cole, A. J., Saffen, D. W., Baraban, J. M. & Worley, P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. _Nature_


340, 474–476 (1989). ONE OF THE FIRST DEMONSTRATIONS THAT SYNAPTIC NMDARS ARE AN IMPORTANT MEDIATOR OF ACTIVITY-DEPENDENT GENE TRANSCRIPTION. PHYSIOLOGICALLY RELEVANT, LTP-INDUCING STIMULI


WERE FOUND TO TRIGGER ROBUST INDUCTION OF IMMEDIATE EARLY GENE EXPRESSION THAT WAS DEPENDENT ON NMDAR ACTIVITY. Article  CAS  PubMed  Google Scholar  * Hardingham, G. E., Arnold, F. J. &


Bading, H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. _Nature Neurosci._ 4, 261–267 (2001). Article  CAS  PubMed  Google Scholar  *


Zhang, S. J. et al. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. _PLoS


Genet._ 5, e1000604 (2009). Article  PubMed  PubMed Central  CAS  Google Scholar  * Chrivia, J. C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. _Nature_ 365,


855–859 (1993). Article  CAS  PubMed  Google Scholar  * Enslen, H. et al. Characterization of Ca2+/calmodulin-dependent protein kinase IV. Role in transcriptional regulation. _J. Biol.


Chem._ 269, 15520–15527 (1994). Article  CAS  PubMed  Google Scholar  * Kwok, R. P. S. et al. Nuclear protein CBP is coactivator for the transcription factor CREB. _Nature_ 370, 223–226


(1994). Article  CAS  PubMed  Google Scholar  * Matthews, R. P. et al. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression.


_Mol. Cell. Biol._ 14, 6107–6116 (1994). CAS  PubMed  PubMed Central  Google Scholar  * Sun, P., Enslen, H., Myung, P. S. & Maurer, R. A. Differential activation of CREB by


Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. _Genes Dev._ 8, 2527–2539 (1994). Article  CAS  PubMed 


Google Scholar  * Hardingham, G. E., Chawla, S., Johnson, C. M. & Bading, H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. _Nature_ 385,


260–265 (1997). Article  CAS  PubMed  Google Scholar  * Chawla, S., Hardingham, G. E., Quinn, D. R. & Bading, H. CBP: a signal-regulated transcriptional coactivator controlled by nuclear


calcium and CaM kinase IV. _Science_ 281, 1505–1509 (1998). Article  CAS  PubMed  Google Scholar  * Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by


transcription-dependent and -independent mechanisms. _Science_ 286, 1358–1362 (1999). Article  CAS  PubMed  Google Scholar  * Mayr, B. & Montminy, M. Transcriptional regulation by the


phosphorylation-dependent factor CREB. _Nature Rev. Mol. Cell Biol._ 2, 599–609 (2001). Article  CAS  Google Scholar  * Lonze, B. E., Riccio, A., Cohen, S. & Ginty, D. D. Apoptosis,


axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. _Neuron_ 34, 371–385 (2002). Article  CAS  PubMed  Google Scholar  * Mantamadiotis, T. et al. Disruption


of CREB function in brain leads to neurodegeneration. _Nature Genetics_ 31, 47–54 (2002). Article  CAS  PubMed  Google Scholar  * Carlezon, W. A., Jr,, Duman, R. S. & Nestler, E. J. The


many faces of CREB. _Trends Neurosci._ 28, 436–445 (2005). Article  CAS  PubMed  Google Scholar  * Lee, B., Butcher, G. Q., Hoyt, K. R., Impey, S. & Obrietan, K. Activity-dependent


neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. _J. Neurosci._ 25,


1137–1148 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Limback-Stokin, K., Korzus, E., Nagaoka-Yasuda, R. & Mayford, M. Nuclear calcium/calmodulin regulates memory


consolidation. _J. Neurosci._ 24, 10858–10867 (2004). Article  PubMed  PubMed Central  CAS  Google Scholar  * Lau, D. & Bading, H. Synaptic activity-mediated suppression of p53 and


induction of nuclear calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition. _J. Neurosci._ 29, 4420–4429 (2009). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Leveille, F. et al. Suppression of the intrinsic apoptosis pathway by synaptic activity. _J. Neurosci._ 30, 2623–2635 (2010). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Favaron, M. et al. NMDA-stimulated expression of BDNF mRNA in cultured cerebellar granule neurones. _Neuroreport_ 4, 1171–1174 (1993). Article  CAS  PubMed


  Google Scholar  * Jiang, X. et al. The excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal


neurons. _J. Neurochem._ 94, 713–722 (2005). Article  CAS  PubMed  Google Scholar  * Thoenen, H., Barde, Y. A., Davies, A. M. & Johnson, J. E. Neurotrophic factors and neuronal death.


_Ciba Found. Symp._ 126, 82–95 (1987). CAS  PubMed  Google Scholar  * Hansen, H. H. et al. Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat


brain. _Neurobiol. Dis._ 16, 440–453 (2004). Article  CAS  PubMed  Google Scholar  * Vashishta, A. et al. Nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) as a mediator of


antiapoptotic transcription in NMDA receptor-stimulated cortical neurons. _J. Neurosci._ 29, 15331–15340 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zheng, S. et al.


NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice. _J. Clin. Invest._ 120, 2446–2456 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shinoda, S.


et al. Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. _J. Clin. Invest._ 113, 1059–1068 (2004). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Lehtinen, M. K. et al. A conserved MST–FOXO signaling pathway mediates oxidative-stress responses and extends life span. _Cell_ 125, 987–1001 (2006). Article  CAS


  PubMed  Google Scholar  * Salih, D. A. & Brunet, A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. _Curr. Opin. Cell Biol._ 20, 126–136 (2008).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Dick, O. & Bading, H. Synaptic activity and nuclear calcium signaling protects hippocampal neurons from death signal-associated


nuclear translocation of FoxO3a induced by extrasynaptic NMDA receptors. 19 Apr 2010 _J. Biol. Chem._ (doi:10.1074/jbc.M110.127654). Article  CAS  Google Scholar  * Al-Mubarak, B., Soriano,


F. X. & Hardingham, G. E. Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site: FOXO1 is a FOXO target gene. _Channels (Austin)_ 3, 233–238 (2009).


Article  CAS  Google Scholar  * Biteau, B., Labarre, J. & Toledano, M. B. ATP-dependent reduction of cysteine-sulphinic acid by _S. cerevisiae_ sulphiredoxin. _Nature_ 425, 980–984


(2003). Article  CAS  PubMed  Google Scholar  * Chang, T. S. et al. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of


cysteine sulfinic acid in the active site to cysteine. _J. Biol. Chem._ 279, 50994–51001 (2004). Article  CAS  PubMed  Google Scholar  * Budanov, A. V., Sablina, A. A., Feinstein, E.,


Koonin, E. V. & Chumakov, P. M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. _Science_ 304, 596–600 (2004). Article  CAS  PubMed  Google Scholar


  * Soriano, F. X. et al. Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H-1, 2-dithiole-3-thione. _J. Neurochem._


107, 533–543 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Rhee, S. G., Woo, H. A., Bae, S. H. & Park, S. Sestrin 2 is not a reductase for cysteine sulfinic acid of


peroxiredoxins. _Antioxid. Redox Signal._ 11, 739–745 (2009). Article  PubMed  CAS  Google Scholar  * Hardingham, G. E. Coupling of the NMDA receptor to neuroprotective and neurodestructive


events. _Biochem. Soc. Trans._ 37, 1147–1160 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bading, H., Ginty, D. D. & Greenberg, M. E. Regulation of gene expression in


hippocampal neurons by distinct calcium signaling pathways. _Science_ 260, 181–186 (1993). THIS WAS THE FIRST PAPER TO SHOW THAT CA2+ REGULATION OF GENE EXPRESSION CAN DEPEND ON THE SITE OF


CA2+ ENTRY IN NEURONS. MEMBRANE DEPOLARIZATION, INDUCING CA2+ INFLUX THROUGH VOLTAGE-GATED CA2+ CHANNELS, WAS SHOWN TO ACTIVATE OVERLAPPING BUT DIFFERENT PROMOTER ELEMENTS COMPARED TO CA2+


INFLUX TRIGGERED BY BATH-GLUTAMATE ACTIVATION OF NMDARS. THIS TURNED OUT TO BE DUE TO ACTIVATION OF EXTRASYNAPTIC NMDARS BUT THIS WAS NOT DISCOVERED UNTIL 2002. SEE ALSO REFERENCE 38.


Article  CAS  PubMed  Google Scholar  * Hardingham, G. E., Chawla, S., Cruzalegui, F. H. & Bading, H. Control of recruitment and transcription-activating function of CBP determines gene


regulation by NMDA receptors and L-type calcium channels. _Neuron_ 22, 789–798 (1999). Article  CAS  PubMed  Google Scholar  * Sala, C., Rudolph-Correia, S. & Sheng, M. Developmentally


regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. _J. Neurosci._ 20, 3529–3536 (2000). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Ghosh, A. & Greenberg, M. E. Calcium signalling in neurons: molecular mechanisms and cellular consequences. _Science_ 268, 239–247 (1995). Article  CAS  PubMed


  Google Scholar  * Hardingham, G. E. & Bading, H. Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated. _Biochim. Biophys. Acta_ 1600,


148–153 (2002). Article  CAS  PubMed  Google Scholar  * Dieterich, D. C. et al. Caldendrin–Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus. _PLoS Biol._ 6, e34


(2008). Article  PubMed  PubMed Central  CAS  Google Scholar  * Chandler, L. J., Sutton, G., Dorairaj, N. R. & Norwood, D. N-methyl D-aspartate receptor-mediated bidirectional control of


extracellular signal-regulated kinase activity in cortical neuronal cultures. _J. Biol. Chem._ 276, 2627–2636 (2001). Article  CAS  PubMed  Google Scholar  * Bading, H. & Greenberg, M.


E. Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. _Science_ 253, 912–914 (1991). Article  CAS  PubMed  Google Scholar  * Kim, M. J., Dunah, A. W., Wang, Y. T.


& Sheng, M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. _Neuron_ 46, 745–760 (2005). Article  CAS  PubMed  Google


Scholar  * Mulholland, P. J., Luong, N. T., Woodward, J. J. & Chandler, L. J. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the


dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway. _Neuroscience_ 151, 419–427 (2008). Article  CAS  PubMed  Google Scholar  * Xu, J. et al.


Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. _J. Neurosci._ 29, 9330–9343 (2009). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Bano, D. et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. _Cell_ 120, 275–285 (2005). Article  CAS  PubMed  Google Scholar  * Kawasaki, H. et al.


Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. _J. Biol. Chem._ 272, 18518–18521 (1997). Article  CAS 


PubMed  Google Scholar  * Cao, J. et al. Distinct requirements for p38α and c-Jun N-terminal kinase stress-activated protein kinases in different forms of apoptotic neuronal death. _J. Biol.


Chem._ 279, 35903–35913 (2004). Article  CAS  PubMed  Google Scholar  * Soriano, F. X. et al. Specific targeting of pro-death NMDA receptor signals with differing reliance on the NR2B PDZ


ligand. _J. Neurosci._ 28, 10696–10710 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Okamoto, S., Krainc, D., Sherman, K. & Lipton, S. A. Antiapoptotic role of the p38


mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. _Proc. Natl Acad. Sci. USA_ 97, 7561–7566 (2000). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Soriano, F. X., Leveille, F., Papadia, S., Bell, K. F. & Hardingham, G. E. Neuronal activity controls the antagonistic balance between PGC-1α


and SMRT in regulating antioxidant defences. _Antioxid. Redox Signal._ (in the press). * Paul, S., Nairn, A. C., Wang, P. & Lombroso, P. J. NMDA-mediated activation of the tyrosine


phosphatase STEP regulates the duration of ERK signaling. _Nature Neurosci._ 6, 34–42 (2003). Article  CAS  PubMed  Google Scholar  * Wahl, A. S. et al. Hypoxic/ischemic conditions induce


expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors. _Neuroscience_ 158, 344–352 (2009). Article  CAS  PubMed  Google Scholar  *


Wittmann, M. et al. Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium


signaling. _J. Neurosci._ 29, 14687–14700 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Taddei, A. et al. Nuclear pore association confers optimal expression levels for an


inducible yeast gene. _Nature_ 441, 774–778 (2006). Article  CAS  PubMed  Google Scholar  * Akhtar, A. & Gasser, S. M. The nuclear envelope and transcriptional control. _Nature Rev.


Genet._ 8, 507–517 (2007). Article  CAS  PubMed  Google Scholar  * Collins, M. O. & Grant, S. G. Supramolecular signalling complexes in the nervous system. _Subcell. Biochem._ 43,


185–207 (2007). Article  CAS  PubMed  Google Scholar  * Aarts, M. et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. _Science_ 298, 846–850


(2002). Article  CAS  PubMed  Google Scholar  * Cao, J. et al. The PSD95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death.


_J. Cell Biol._ 168, 117–126 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N. & Jan, L. Y. Changing subunit composition


of heteromeric NMDA receptors during development of rat cortex. _Nature_ 368, 144–147 (1994). Article  CAS  PubMed  Google Scholar  * Zhong, J., Russell, S. L., Pritchett, D. B., Molinoff,


P. B. & Williams, K. Expression of mRNAs encoding subunits of the N-methyl-D-aspartate receptor in cultured cortical neurons. _Mol. Pharmacol._ 45, 846–853 (1994). CAS  PubMed  Google


Scholar  * Steigerwald, F. et al. C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. _J. Neurosci._ 20, 4573–4581 (2000). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Groc, L. et al. NMDA receptor surface mobility depends on NR2A-2B subunits. _Proc. Natl Acad. Sci. USA_ 103, 18769–18774 (2006). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Martel, M., Wyllie, D. J. & Hardingham, G. E. In developing hippocampal neurons, NR2B-containing NMDA receptors can mediate signalling to


neuronal survival and synaptic potentiation, as well as neuronal death. _Neuroscience_ 158, 334–343 (2009). Article  CAS  PubMed  Google Scholar  * Thomas, C. G., Miller, A. J. &


Westbrook, G. L. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. _J. Neurophysiol._ 95, 1727–1734 (2006). Article  CAS  PubMed  Google Scholar  *


Harris, A. Z. & Pettit, D. L. Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. _J. Physiol._ 584, 509–519 (2007). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Liu, Y. et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both _in vitro_ and _in vivo_. _J. Neurosci._ 27,


2846–2857 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weitlauf, C. et al. Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptor-dependent


long-term potentiation. _J. Neurosci._ 25, 8386–8390 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Berberich, S. et al. Lack of NMDA receptor subtype selectivity for


hippocampal long-term potentiation. _J. Neurosci._ 25, 6907–6910 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Neyton, J. & Paoletti, P. Relating NMDA receptor function


to receptor subunit composition: limitations of the pharmacological approach. _J. Neurosci._ 26, 1331–1333 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Frizelle, P. A.,


Chen, P. E. & Wyllie, D. J. A. Equilibrium constants for NVP-AAM077 acting at recombinant NR1/NR2A and NR1/NR2B NMDA receptors: implications for studies of synaptic transmission. _Mol.


Pharmacol._ 70, 1022–1032 (2006). Article  CAS  PubMed  Google Scholar  * de Marchena, J. et al. NMDA receptor antagonists reveal age-dependent differences in the properties of visual


cortical plasticity. _J. Neurophysiol._ 100, 1936–1948 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * von Engelhardt, J. et al. Excitotoxicity _in vitro_ by NR2A- and


NR2B-containing NMDA receptors. _Neuropharmacology_ 53, 10–17 (2007). Article  CAS  PubMed  Google Scholar  * Hatton, C. J. & Paoletti, P. Modulation of triheteromeric NMDA receptors by


N-terminal domain ligands. _Neuron_ 46, 261–274 (2005). Article  CAS  PubMed  Google Scholar  * Harris, A. Z. & Pettit, D. L. Recruiting extrasynaptic NMDA receptors augments synaptic


signaling. _J. Neurophysiol._ 99, 524–533 (2008). Article  CAS  PubMed  Google Scholar  * Groc, L., Bard, L. & Choquet, D. Surface trafficking of N-methyl-D-aspartate receptors:


physiological and pathological perspectives. _Neuroscience_ 158, 4–18 (2009). Article  CAS  PubMed  Google Scholar  * Tovar, K. R. & Westbrook, G. L. Mobile NMDA receptors at hippocampal


synapses. _Neuron_ 34, 255–264 (2002). Article  CAS  PubMed  Google Scholar  * Chen, H. S. & Lipton, S. A. The chemical biology of clinically tolerated NMDA receptor antagonists. _J.


Neurochem._ 97, 1611–1626 (2006). Article  CAS  PubMed  Google Scholar  * Rossi, D. J., Oshima, T. & Attwell, D. Glutamate release in severe brain ischaemia is mainly by reversed uptake.


_Nature_ 403, 316–321 (2000). Article  CAS  PubMed  Google Scholar  * Choi, D. W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. _Trends


Neurosci._ 11, 465–469 (1988). Article  CAS  PubMed  Google Scholar  * Waagepetersen, H. S., Shimamoto, K. & Schousboe, A. Comparison of effects of DL-threo-β-benzyloxyaspartate


(DL-TBOA) and L-trans-pyrrolidine-2, 4-dicarboxylate (t-2, 4-PDC) on uptake and release of [3h]D-aspartate in astrocytes and glutamatergic neurons. _Neurochem. Res._ 26, 661–666 (2001).


Article  CAS  PubMed  Google Scholar  * Gouix, E. et al. Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. _Mol. Cell. Neurosci._


40, 463–473 (2009). Article  CAS  PubMed  Google Scholar  * Tu, W. et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. _Cell_ 140, 222–234 (2010). THIS


STUDY SHOWED THAT ACTIVATION OF DEATH-ASSOCIATED PROTEIN KINASE 1 (DAPK1) BY ISCHAEMIA CONTRIBUTES TO NEURONAL INJURY BY ENHANCING INJURIOUS CA2+ INFLUX THOUGH EXTRASYNAPTIC NMDARS.


PEPTIDE-MEDIATED DISRUPTION OF DAPK1-GLUN2B INTERACTIONS WAS SHOWN TO BE PROTECTIVE IN MODELS OF STROKE. Article  CAS  PubMed  PubMed Central  Google Scholar  * Milnerwood, A. et al. Early


increase in extrasynaptic NMDA receptor signalling and expression contributes to phenotype onset in Huntington's disease mice. _Neuron_ 65, 178–190 (2010). ENHANCED NMDAR ACTIVITY AND


NMDAR-DEPENDENT EXCITOTOXICITY HAD FOR SOME YEARS BEEN ASSOCIATED WITH HUNTINGTON'S DISEASE PATHOGENESIS. THIS PAPER SHOWED THAT SPECIFIC INCREASES IN EXTRASYNAPTIC (BUT NOT SYNAPTIC)


NMDAR ACTIVITY CONTRIBUTES TO PHENOTYPE ONSET, AND DEMONSTRATED THE BENEFICIAL EFFECTS OF MEMANTINE TREATMENT. Article  CAS  PubMed  Google Scholar  * Subramaniam, S., Sixt, K. M., Barrow,


R. & Snyder, S. H. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. _Science_ 324, 1327–1330 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Nucifora, F. C. et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. _Science_ 291, 2423–2428 (2001). Article  CAS  PubMed  Google


Scholar  * Jiang, H. et al. Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. _Neurobiol. Dis._ 23, 543–551 (2006). Article  CAS  PubMed  Google Scholar


  * McGill, J. K. & Beal, M. F. PGC-1α, a new therapeutic target in Huntington's disease? _Cell_ 127, 465–468 (2006). Article  CAS  PubMed  Google Scholar  * St-Pierre, J. et al.


Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. _Cell_ 127, 397–408 (2006). Article  CAS  PubMed  Google Scholar  * Wareski, P. et al.


PGC-1α and PGC-1β regulate mitochondrial density in neurons. _J. Biol. Chem._ 284, 21379–21385 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weydt, P. et al.


Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. _Cell Metab._ 4, 349–362 (2006). Article


  CAS  PubMed  Google Scholar  * Cui, L. et al. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. _Cell_ 127, 59–69 (2006).


Article  CAS  PubMed  Google Scholar  * Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. _Cell_ 119, 121–135 (2004). Article  CAS 


PubMed  Google Scholar  * Muir, K. W. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. _Curr. Opin. Pharmacol._ 6, 53–60 (2006). Article  CAS  PubMed  Google


Scholar  * Albers, G. W., Goldstein, L. B., Hall, D. & Lesko, L. M. Aptiganel hydrochloride in acute ischemic stroke: a randomized controlled trial. _JAMA_ 286, 2673–2682 (2001). Article


  CAS  PubMed  Google Scholar  * Biegon, A. et al. Dynamic changes in N-methyl-D-aspartate receptors after closed head injury in mice: implications for treatment of neurological and


cognitive deficits. _Proc. Natl Acad. Sci. USA_ 101, 5117–5122 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yaka, R. et al. D-cycloserine improves functional recovery and


reinstates long-term potentiation (LTP) in a mouse model of closed head injury. _FASEB J._ 21, 2033–2041 (2007). Article  CAS  PubMed  Google Scholar  * Lipton, S. A. Pathologically


activated therapeutics for neuroprotection. _Nature Rev. Neurosci._ 8, 803–808 (2007). Article  CAS  Google Scholar  * Chen, H. S. et al. Neuroprotective concentrations of the


N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term


potentiation. _Neuroscience_ 86, 1121–1132 (1998). Article  CAS  PubMed  Google Scholar  * Xia, P., Chen, H. S., Zhang, D. & Lipton, S. A. Memantine preferentially blocks extrasynaptic


over synaptic NMDA receptor currents in hippocampal autapses. _J. Neurosci._ 30, 11246–11250 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kotermanski, S. E. & Johnson,


J. W. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer's drug memantine. _J. Neurosci._ 29, 2774–2779 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Chen, S. & Diamond, J. S. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. _J. Neurosci._ 22, 2165–2173 (2002).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Clark, B. A. & Cull-Candy, S. G. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only


synapse. _J. Neurosci._ 22, 4428–4436 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Scimemi, A., Fine, A., Kullmann, D. M. & Rusakov, D. A. NR2B-containing receptors


mediate cross talk among hippocampal synapses. _J. Neurosci._ 24, 4767–4777 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bengtson, C. P., Dick, O. & Bading, H. A


quantitative method to assess extrasynaptic NMDA receptor function in the protective effect of synaptic activity against neurotoxicity. _BMC Neurosci._ 9, 11 (2008). Article  PubMed  PubMed


Central  CAS  Google Scholar  * Wu, G. Y., Deisseroth, K. & Tsien, R. W. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow,


less sensitive mitogen-activated protein kinase pathway. _Proc. Natl Acad. Sci. USA_ 98, 2808–2813 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hardingham, G. E., Arnold,


F. J. & Bading, H. A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. _Nature Neurosci._ 4, 565–566 (2001). Article  CAS  PubMed 


Google Scholar  * Impey, S. et al. Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. _Neuron_ 34, 235–244 (2002). Article  CAS  PubMed  Google


Scholar  * Screaton, R. A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. _Cell_ 119, 61–74 (2004). Article  CAS  PubMed  Google Scholar 


* Kovacs, K. A. et al. TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. _Proc. Natl Acad. Sci. USA_ 104, 4700–4705 (2007).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ravnskjaer, K. et al. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. _EMBO J._ 26,


2880–2889 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Luo, Y., Zhu, W., Jia, J., Zhang, C. & Xu, Y. NMDA receptor dependent PGC-1α up-regulation protects the cortical


neuron against oxygen-glucose deprivation/reperfusion injury. _J. Mol. Neurosci._ 39, 262–268 (2009). Article  CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank K.


Bell and C. P. Bengston for comments on the manuscript, and R. Petralia for supplying the electronmicrographs in Box 1. Work in the authors' laboratories is supported by the Wellcome


Trust, the Medical Research Council (MRC), the Biotechnology and Biological Sciences Research Council, the Royal Society (G.E.H.) and by the Alexander von Humboldt Foundation, the European


Research Council Advanced Grant, the Deutsche Forschungsgemeinschaft, the EU Network of Excellence NeuroNE and the EU Project Glutamate Receptor Interacting Proteins as Novel Neuroprotective


Targets (GRIPANNT) (H.B.). G.E.H. is an MRC senior non-clinical research fellow. H.B. is a member of the Excellence Cluster _CellNetworks_ at Heidelberg University. AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Centre for Integrative Physiology, University of Edinburgh, School of Biomedical Sciences, Hugh Robson Building, EH8 9XD, Edinburgh, UK Giles E. Hardingham *


Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Im Neuenheimer Feld 364, D69120, Heidelberg, Germany Hilmar Bading * Hilmar Bading Authors * Giles E. Hardingham


View author publications You can also search for this author inPubMed Google Scholar * Hilmar Bading View author publications You can also search for this author inPubMed Google Scholar


ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS RELATED LINKS FURTHER INFORMATION Giles E. Hardingham's homepage Hilmar


Bading's homepage GLOSSARY * Pro-apoptotic Bcl2 homology domain 3 (BH3)-only member gene (Also known as _Puma_.) A gene encoding a pro-apoptotic member of the Bcl2 family that contains


only a BH3 domain, as opposed to those that contain multiple BH domains (for example, _Bax_ and _Bak_) * Calpain A family of Ca2+-dependent cysteine proteases. * Reversed uptake Describes


the action of glutamate transporters in pumping glutamate out of the cell, as opposed to their usual function of taking glutamate up from the extracellular space. Ischaemic conditions cause


reversed uptake owing to membrane depolarization. * Hetero-exchange The process by which an inwardly transported molecule leads to the efflux of a different molecule by the same transporter.


* Huntingtin A gene that contains an elevated number of CAG trinucleotide repeats in Huntington's disease and is the disease-causing agent. * Sumoylation The process of covalent


attachment of small ubiquitin-like modifier (SUMO) protein onto another protein. This modification typically alters the activity, stability or localization of the modified protein. *


3-nitropropanoic acid A mitochondrial toxin that inhibits succinate dehydrogenase (part of complex II). * Transactivating capacity The ability of a transcription factor or co-activator to


enhance gene transcription when associated with that gene's promoter. This may be influenced by post-translational modifications that determine the association of accessory factors,


including chromatin-modifying enzymes. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Hardingham, G., Bading, H. Synaptic versus extrasynaptic NMDA


receptor signalling: implications for neurodegenerative disorders. _Nat Rev Neurosci_ 11, 682–696 (2010). https://doi.org/10.1038/nrn2911 Download citation * Published: 15 September 2010 *


Issue Date: October 2010 * DOI: https://doi.org/10.1038/nrn2911 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative