Metaplasticity: tuning synapses and networks for plasticity

Metaplasticity: tuning synapses and networks for plasticity


Play all audios:

Loading...

KEY POINTS * Synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), must be tightly regulated to prevent saturation, which would impair learning.


Metaplasticity mechanisms have evolved to help implement this essential computational constraint. Metaplasticity refers to neural changes that are induced by activity at one point in time


and that persist and affect subsequently induced LTP or LTD. * The activation of NMDA (_N_-methyl-D-aspartate) receptors can cause a persistent reduction in LTP induction and an enhancement


of LTD. These effects are synapse-specific, last tens of minutes and contribute to LTD induction during conventional low-frequency stimulation protocols. The mechanisms of this regulation


are poorly understood, but activation of protein phosphatases and alteration of calcium/calmodulin-dependent protein kinase II function are clear candidates. * Prior activation of group 1


metabotropic glutamate receptors (group 1 mGluRs) facilitates both the induction and the persistence of LTP in the hippocampus. The facilitated induction probably involves depression of


afterhyperpolarizations (AHPs) and trafficking of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors to the extrasynaptic membrane, whereas the facilitated persistence


entails _de novo_ local protein synthesis. * Heterosynaptic metaplasticity that crosses between synapses can also occur. Stimulation of protein synthesis by activity in one set of synapses


can facilitate LTP persistence through a synaptic tag-and-capture process operating at a second set of weakly activated synapses. Heterosynaptic metaplasticity can also be mediated by


altered postsynaptic ion-channel function and retrograde endocannabinoid signalling that reduces transmission at nearby inhibitory GABAergic terminals. * Behaviourally, stress can inhibit


LTP and facilitate LTD through NMDA-receptor-dependent mechanisms. Sensory stimulation or deprivation alters plasticity thresholds in cortical regions, especially during developmental


periods. Reductions in the slow AHP in piriform and hippocampal neurons support the learning of behavioural tasks, suggesting a metaplastic role for this mechanism in controlling


learning-related plasticity thresholds. * The ability to harness metaplasticity mechanisms might contribute to strategies for treating adult amblyopia or the development of therapies aimed


at improving cognition in individuals with neurological disorders. Metaplasticity paradigms also share commonalities with ischaemic preconditioning, so its mechanisms might present targets


for preventing stroke in at-risk individuals. * In conclusion, metaplasticity is a major regulator of plasticity thresholds and therefore has a key role in keeping synapses working in a


range that permits the full expression of plasticity. In turn, this helps to keep networks operating at an appropriate level for information processing and storage. Considerable research is


still needed to clarify the mechanisms that underpin different forms of metaplasticity and their contribution to network dynamics and behavioural learning. ABSTRACT Synaptic plasticity is a


key component of the learning machinery in the brain. It is vital that such plasticity be tightly regulated so that it occurs to the proper extent at the proper time. Activity-dependent


mechanisms that have been collectively termed metaplasticity have evolved to help implement these essential computational constraints. Various intercellular signalling molecules can trigger


lasting changes in the ability of synapses to express plasticity; their mechanisms of action are reviewed here, along with a consideration of how metaplasticity might affect learning and


clinical conditions. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS ADAPTIVE CONTROL OF SYNAPTIC PLASTICITY INTEGRATES MICRO- AND MACROSCOPIC NETWORK FUNCTION Article 29 August 2022 THE


PLASTICITOME OF CORTICAL INTERNEURONS Article 30 December 2022 CO-DEPENDENT EXCITATORY AND INHIBITORY PLASTICITY ACCOUNTS FOR QUICK, STABLE AND LONG-LASTING MEMORIES IN BIOLOGICAL NETWORKS


Article Open access 20 March 2024 REFERENCES * Martin, S. J., Grimwood, P. D. & Morris, R. G. M. Synaptic plasticity and memory: an evaluation of the hypothesis. _Annu. Rev. Neurosci._


23, 649–711 (2000). Article  CAS  PubMed  Google Scholar  * Neves, G., Cooke, S. F. & Bliss, T. V. P. Synaptic plasticity, memory and the hippocampus: a neural network approach to


causality. _Nature Rev. Neurosci._ 9, 65–75 (2008). Article  CAS  Google Scholar  * Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. _Trends Neurosci._


19, 126–130 (1996). THIS PAPER PROVIDED THE FIRST FORMAL DESCRIPTION AND REVIEW OF METAPLASTICITY PHENOMENA. Article  CAS  PubMed  Google Scholar  * Abraham, W. C. & Tate, W. P.


Metaplasticity: a new vista across the field of synaptic plasticity. _Prog. Neurobiol._ 52, 303–323 (1997). Article  CAS  PubMed  Google Scholar  * Huang, Y. Y., Colino, A., Selig, D. K.


& Malenka, R. C. The influence of prior synaptic activity on the induction of long-term potentiation. _Science_ 255, 730–733 (1992). THIS KEY PAPER PROVIDED THE FIRST CLEAR DEMONSTRATION


THAT PRIOR ACTIVATION OF NMDARS CAN INHIBIT THE INDUCTION OF SUBSEQUENT LTP. Article  CAS  PubMed  Google Scholar  * Coan, E. J., Irving, A. J. & Collingridge, G. L. Low-frequency


activation of the NMDA receptor system can prevent the induction of LTP. _Neurosci. Lett._ 105, 205–210 (1989). Article  CAS  PubMed  Google Scholar  * Youssef, F. F., Addae, J. I. &


Stone, T. W. NMDA-induced preconditioning attenuates synaptic plasticity in the rat hippocampus. _Brain Res._ 1073, 183–189 (2006). Article  PubMed  CAS  Google Scholar  * Fujii, S. et al.


The long-term suppressive effect of prior activation of synaptic inputs by low-frequency stimulation on induction of long-term potentiation in CA1 neurons of guinea pig hippocampal slices.


_Exp. Brain Res._ 111, 305–312 (1996). CAS  PubMed  Google Scholar  * Woo, N. H. & Nguyen, P. V. “Silent” metaplasticity of the late phase of long-term potentiation requires protein


phosphatases. _Learn. Mem._ 9, 202–213 (2002). Article  PubMed  PubMed Central  Google Scholar  * Fujii, S. et al. Endogenous adenosine regulates the effects of low-frequency stimulation on


the induction of long-term potentiation in CA1 neurons of guinea pig hippocampal slices. _Neurosci. Lett._ 279, 121–124 (2000). Article  CAS  PubMed  Google Scholar  * Izumi, Y., Tokuda, K.


& Zorumski, C. F. Long-term potentiation inhibition by low-level _N_-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase.


_Hippocampus_ 18, 258–265 (2008). Article  CAS  PubMed  Google Scholar  * O'Connor, D. H., Wittenberg, G. M. & Wang, S. S. H. Dissection of bidirectional synaptic plasticity into


saturable unidirectional processes. _J. Neurophysiol._ 94, 1565–1573 (2005). Article  PubMed  Google Scholar  * Abraham, W. C. & Huggett, A. Induction and reversal of long-term


potentiation by repeated high-frequency stimulation in rat hippocampal slices. _Hippocampus_ 7, 137–145 (1997). Article  CAS  PubMed  Google Scholar  * Christie, B. R. & Abraham, W. C.


Priming of associative long-term depression by θ frequency synaptic activity. _Neuron_ 8, 79–84 (1992). Article  Google Scholar  * Wang, Y., Wu, J., Rowan, M. J. & Anwyl, R. Role of


protein kinase C in the induction of homosynaptic long-term depression by brief low frequency stimulation in the dentate gyrus of the rat hippocampus _in vitro_. _J. Physiol._ 513, 467–475


(1998). Article  CAS  PubMed  PubMed Central  Google Scholar  * Mockett, B., Coussens, C. & Abraham, W. C. NMDA receptor-mediated metaplasticity during the induction of long-term


depression by low-frequency stimulation. _Eur. J. Neurosci._ 15, 1819–1826 (2002). THIS PAPER PROVIDED THE FIRST DEMONSTRATION THAT THE INDUCTION OF LTD BY LFS INVOLVES AN INITIAL


NMDAR-INDUCED REDUCTION IN THE THRESHOLD FOR LTD BY PULSES EARLY IN THE LFS, SO THAT PULSES LATER IN THE LFS CAN INDUCE THE LTD. Article  PubMed  Google Scholar  * Ngezahayo, A., Schachner,


M. & Artola, A. Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. _J. Neurosci._ 20, 2451–2458 (2000). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Lau, C. G. & Zukin, R. S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. _Nature Rev. Neurosci._ 8, 413–426 (2007). Article 


CAS  Google Scholar  * Perez-Otano, I. & Ehlers, M. D. Homeostatic plasticity and NMDA receptor trafficking. _Trends Neurosci._ 28, 229–238 (2005). Article  CAS  PubMed  Google Scholar 


* Selig, D. K., Hjelmstad, G. O., Herron, C., Nicoll, R. A. & Malenka, R. C. Independent mechanisms for long-term depression of AMPA and NMDA responses. _Neuron_ 15, 417–426 (1995).


Article  CAS  PubMed  Google Scholar  * Morishita, W., Marie, H. & Malenka, R. C. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. _Nature


Neurosci._ 8, 1043–1050 (2005). Article  CAS  PubMed  Google Scholar  * Sobczyk, A. & Svoboda, K. Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current. _Neuron_ 53,


17–24 (2007). THIS PAPER PROVIDED A CLEAR DEMONSTRATION, USING 2-PHOTON RELEASE OF CAGED GLUTAMATE, THAT SYNAPTIC ACTIVATION OF NMDARS CAN LEAD TO DOWN-REGULATION OF NMDAR FUNCTION AND THUS


SERVE AS A POSSIBLE MECHANISM OF METAPLASTICITY. Article  CAS  PubMed  Google Scholar  * Kato, K. & Zorumski, C. F. Nitric oxide inhibitors facilitate the induction of hippocampal


long-term potentiation by modulating NMDA responses. _J. Neurophysiol._ 70, 1260–1263 (1993). Article  CAS  PubMed  Google Scholar  * Murphy, K. P. S. J., Williams, J. H., Bettache, N. &


Bliss, T. V. P. Photolytic release of nitric oxide modulates NMDA receptor-mediated transmission but does not induce long-term potentiation at hippocampal synapses. _Neuropharmacology_ 33,


1375–1385 (1994). Article  CAS  PubMed  Google Scholar  * Fong, D. K., Rao, A., Crump, F. T. & Craig, A. M. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of


NMDA receptors and calcium/calmodulin-dependent kinase II. _J. Neurosci._ 22, 2153–2164 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Groc, L. et al. Differential


activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. _Nature Neurosci._ 7, 695–696 (2004). Article  CAS  PubMed  Google Scholar  * Montgomery, J., Selcher, J.,


Hanson, J. & Madison, D. Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state. _BMC Neurosci._ 6, 48 (2005). Article  PubMed  PubMed Central  CAS  Google


Scholar  * Stanton, P. K. Transient protein kinase C activation primes long-term depression and suppresses long-term potentiation of synaptic transmission in hippocampus. _Proc. Natl Acad.


Sci. USA_ 92, 1724–1728 (1995). Article  CAS  PubMed  PubMed Central  Google Scholar  * Izumi, Y., Clifford, D. B. & Zorumski, C. F. Inhibition of long-term potentiation by NMDA-mediated


nitric oxide release. _Science_ 257, 1273–1276 (1992). Article  CAS  PubMed  Google Scholar  * Hsu, K. S., Ho, W. C., Huang, C. C. & Tsai, J. J. Transient removal of extracellular Mg2+


elicits persistent suppression of LTP at hippocampal CA1 synapses via PKC activation. _J. Neurophysiol._ 84, 1279–1288 (2000). Article  CAS  PubMed  Google Scholar  * Gisabella, B., Rowan,


M. J. & Anwyl, R. Mechanisms underlying the inhibition of long-term potentiation by preconditioning stimulation in the hippocampus _in vitro_. _Neuroscience_ 121, 297–305 (2003). Article


  CAS  PubMed  Google Scholar  * Waxman, E. A. & Lynch, D. R. _N_-methyl-D-aspartate receptor subtype mediated bidirectional control of p38 mitogen-activated protein kinase. _J. Biol.


Chem._ 280, 29322–29333 (2005). Article  CAS  PubMed  Google Scholar  * McNaughton, B. L., Douglas, R. M. & Goddard, G. V. Synaptic enhancement in fascia dentate: cooperativity among


coactive afferents. _Brain Res._ 157, 277–293 (1978). Article  CAS  PubMed  Google Scholar  * Frey, U., Schollmeier, K., Reymann, K. G. & Seidenbecher, T. Asymptotic hippocampal


long-term potentiation in rats does not preclude additional potentiation at later phases. _Neuroscience_ 67, 799–807 (1995). THIS IMPORTANT PAPER DEMONSTRATED THAT THE APPARENT SATURATION OF


LTP BY REPEATED HFS CAN, IN SOME SITUATIONS AT LEAST, SIMPLY REFLECT A TRANSIENT METAPLASTIC INHIBITION OF FURTHER LTP. THUS, ADDITIONAL LTP CAN BE OBTAINED BY AN HFS GIVEN AFTER A REST


PERIOD. Article  CAS  PubMed  Google Scholar  * Moody, T. D., Carlisle, H. J. & O'Dell, T. J. A nitric oxide-independent and β-adrenergic receptor-sensitive form of metaplasticity


limits θ-frequency stimulation-induced LTP in the hippocampal CA1 region. _Learn. Mem._ 6, 619–633 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gold, J. I. & Bear, M.


F. A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. _Proc. Natl Acad. Sci. USA_ 91, 3941–3945 (1994). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Alkon, D. L. et al. Learning and memory. FENS Study Group. _Brain Res. Brain Res. Rev._ 16, 193–220 (1991). Article  CAS  PubMed  Google Scholar  *


Bear, M. F. Mechanism for a sliding synaptic modification threshold. _Neuron_ 15, 1–4 (1995). Article  CAS  PubMed  Google Scholar  * Deisseroth, K., Bito, H., Schulman, H. & Tsien, R.


W. A molecular mechanism for metaplasticity. _Curr. Biol._ 5, 1334–1338 (1995). Article  CAS  PubMed  Google Scholar  * Mauceri, D., Cattabeni, F., Di Luca, M. & Gardoni, F.


Calcium/calmodulin-dependent protein kinase II phosphorylation drives synapse-associated protein 97 into spines. _J. Biol. Chem._ 279, 23813–23821 (2004). Article  CAS  PubMed  Google


Scholar  * Mayford, M., Wang, J., Kandel, E. R. & O'Dell, T. J. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP.


_Cell_ 81, 891–904 (1995). Article  CAS  PubMed  Google Scholar  * Fukunaga, K., Stoppini, L., Miyamoto, E. & Muller, D. Long-term potentiation is associated with an increased activity


of Ca2+/calmodulin-dependent protein kinase II. _J. Biol. Chem._ 268, 7863–7867 (1993). Article  CAS  PubMed  Google Scholar  * Krucker, T. et al. Targeted disruption of RC3 reveals a


calmodulin-based mechanism for regulating metaplasticity in the hippocampus. _J. Neurosci._ 22, 5525–5535 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, L. et al.


Hippocampal synaptic metaplasticity requires inhibitory autophosphorylation of Ca2+/calmodulin-dependent kinase II. _J. Neurosci._ 25, 7697–7707 (2005). THIS PAPER PROVIDED A KEY


DEMONSTRATION THAT PHOSPHORYLATION OF THE THR305/THR306 SITE ON ΑCAMKII MEDIATES THE METAPLASTIC INHIBITION OF LTP BY SYNAPTIC ACTIVITY. Article  CAS  PubMed  PubMed Central  Google Scholar


  * Cooke, S. F. et al. Autophosphorylation of αCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. _J. Physiol._ 574, 805–818 (2006). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Cohen, A. S., Coussens, C. M., Raymond, C. R. & Abraham, W. C. Long-lasting increase in cellular excitability associated with the priming of LTP


induction in rat hippocampus. _J. Neurophysiol._ 82, 3139–3148 (1999). Article  CAS  PubMed  Google Scholar  * Ireland, D. R. & Abraham, W. C. Group I mGluRs increase excitability of


hippocampal CA1 pyramidal neurons by a PLC-independent mechanism. _J. Neurophysiol._ 88, 107–116 (2002). Article  CAS  PubMed  Google Scholar  * Ireland, D. R., Guevremont, D., Williams, J.


M. & Abraham, W. C. Metabotropic glutamate receptor-mediated depression of the slow afterhyperpolarization is gated by tyrosine phosphatases in hippocampal CA1 pyramidal neurons. _J.


Neurophysiol._ 92, 2811–2819 (2004). Article  CAS  PubMed  Google Scholar  * Oh, M. C., Derkach, V. A., Guire, E. S. & Soderling, T. R. Extrasynaptic membrane trafficking regulated by


GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. _J. Biol. Chem._ 281, 752–758 (2006). THIS STUDY PROVIDED AN IMPORTANT HIPPOCAMPAL DEMONSTRATION THAT


TRAFFICKING OF AMPARS TO THE EXTRASYNAPTIC MEMBRANE CAN PRIME SYNAPSES FOR ENHANCED LTP IN RESPONSE TO A SUBSEQUENT HFS. Article  CAS  PubMed  Google Scholar  * Gao, C., Sun, X. & Wolf,


M. E. Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. _J. Neurochem._ 98,


1664–1677 (2006). Article  CAS  PubMed  Google Scholar  * Grooms, S. Y. et al. Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. _J.


Neurosci._ 26, 8339–8351 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * O'Connor, J. J., Rowan, M. J. & Anwyl, R. Long-lasting enhancement of NMDA receptor-mediated


synaptic transmission by metabotropic glutamate receptor activation. _Nature_ 367, 557–559 (1994). Article  CAS  PubMed  Google Scholar  * MacDonald, J. F., Jackson, M. F. & Beazely, M.


A. G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus. _Biochim. Biophys. Acta_ 1768, 941–951 (2007). Article  CAS  PubMed  Google Scholar  * Christie, B. R.,


Stellwagen, D. & Abraham, W. C. Reduction of the threshold for long-term potentiation by prior theta-frequency synaptic activity. _Hippocampus_ 5, 52–59 (1995). Article  CAS  PubMed 


Google Scholar  * Cohen, A. S., Raymond, C. R. & Abraham, W. C. Priming of long-term potentiation induced by activation of metabotropic glutamate receptors coupled to phospholipase C.


_Hippocampus_ 8, 160–170 (1998). Article  CAS  PubMed  Google Scholar  * Blank, T., Nijholt, I., Eckart, K. & Spiess, J. Priming of long-term potentiation in mouse hippocampus by


corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning. _J. Neurosci._ 22, 3788–3794 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Cohen, A. S. & Abraham, W. C. Facilitation of long-term potentiation by prior activation of metabotropic glutamate receptors. _J. Neurophysiol._ 76, 953–962 (1996). Article  CAS  PubMed


  Google Scholar  * Matsuda, Y., Marzo, A. & Otani, S. The presence of background dopamine signal converts long-term synaptic depression to potentiation in rat prefrontal cortex. _J.


Neurosci._ 26, 4803–4810 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sun, X., Zhao, Y. & Wolf, M. E. Dopamine receptor stimulation modulates AMPA receptor synaptic


insertion in prefrontal cortex neurons. _J. Neurosci._ 25, 7342–7351 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bortolotto, Z. A., Bashir, Z. I., Davies, C. H. &


Collingridge, G. L. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. _Nature_ 368, 740–743 (1994). THIS PAPER PROVIDED THE


FIRST DEMONSTRATION THAT ACTIVATION OF MGLURS CAN METAPLASTICALLY PROMOTE SUBSEQUENT LTP INDUCTION, IN THIS CASE BY CHANGING THE STATE OF THE SYNAPSES SO AS TO RENDER FURTHER ACTIVATION OF


MGLURS UNNECESSARY FOR LTP. Article  CAS  PubMed  Google Scholar  * Bortolotto, Z. A. et al. Studies on the role of metabotropic glutamate receptors in long-term potentiation: some


methodological considerations. _J. Neurosci. Methods_ 59, 19–24 (1995). Article  CAS  PubMed  Google Scholar  * Bortolotto, Z. A. et al. The regulation of hippocampal LTP by the molecular


switch, a form of metaplasticity, requires mGlu5 receptors. _Neuropharmacology_ 49, 13–25 (2005). Article  CAS  PubMed  Google Scholar  * Bortolotto, Z. A. & Collingridge, G. L.


Involvement of calcium/calmodulin-dependent protein kinases in the setting of a molecular switch involved in hippocampal LTP. _Neuropharmacology_ 37, 535–544 (1998). Article  CAS  PubMed 


Google Scholar  * Bortolotto, Z. A. & Collingridge, G. L. A role for protein kinase C in a form of metaplasticity that regulates the induction of long-term potentiation at CA1 synapses


of the adult rat hippocampus. _Eur. J. Neurosci._ 12, 4055–4062 (2000). Article  CAS  PubMed  Google Scholar  * Raymond, C. R., Thompson, V. L., Tate, W. P. & Abraham, W. C. Metabotropic


glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation. _J. Neurosci._ 20, 969–976 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Maggio, N. & Segal, M. Unique regulation of long term potentiation in the rat ventral hippocampus. _Hippocampus_ 17, 10–25 (2007). Article  CAS  PubMed  Google Scholar  * Mellentin, C.,


Jahnsen, H. & Abraham, W. C. Priming of long-term potentiation mediated by ryanodine receptor activation in rat hippocampal slices. _Neuropharmacology_ 52, 118–125 (2007). Article  CAS 


PubMed  Google Scholar  * Klann, E. & Dever, T. E. Biochemical mechanisms for translational regulation in synaptic plasticity. _Nature Rev. Neurosci._ 5, 931–942 (2004). Article  CAS 


Google Scholar  * Tsokas, P., Ma, T., Iyengar, R., Landau, E. M. & Blitzer, R. D. Mitogen-activated protein kinase upregulates the dendritic translation machinery in long-term


potentiation by controlling the mammalian target of rapamycin pathway. _J. Neurosci._ 27, 5885–5894 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Huang, F., Chotiner, J. K.


& Steward, O. The mRNA for elongation factor 1α is localized in dendrites and translated in response to treatments that induce long-term depression. _J. Neurosci._ 25, 7199–7209 (2005).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E. M. & Kennedy, M. B. Tetanic stimulation leads to increased accumulation of


Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. _J. Neurosci._ 19, 7823–7833 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Rush, A. M., Wu, J. Q., Rowan, M. J. & Anwyl, R. Group I metabotropic glutamate receptor (mGluR)-dependent long-term depression mediated via p38 mitogen-activated protein kinase is


inhibited by previous high-frequency stimulation and activation of mGluRs and protein kinase C in the rat dentate gyrus _in vitro_. _J. Neurosci._ 22, 6121–6128 (2002). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction


in visual cortex. _J. Neurosci._ 2, 32–48 (1982). THIS SEMINAL PAPER DESCRIBED A MODEL DESIGNED TO ACCOUNT FOR THE VARIOUS FEATURES OF EXPERIENCE-DEPENDENT PLASTICITY IN THE VISUAL CORTEX.


NOW KNOWN AS THE BCM MODEL, THE WORK INSPIRED NUMEROUS EXPERIMENTAL TESTS OF ITS ESSENTIAL PRINCIPLES. Article  CAS  PubMed  PubMed Central  Google Scholar  * Holland, L. L. & Wagner, J.


J. Primed facilitation of homosynaptic long-term depression and depotentiation in rat hippocampus. _J. Neurosci._ 18, 887–894 (1998). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Wang, H. & Wagner, J. J. Priming-induced shift in synaptic plasticity in the rat hippocampus. _J. Neurophysiol._ 82, 2024–2028 (1999). Article  CAS  PubMed  Google Scholar  *


Roth-Alpermann, C., Morris, R. G. M., Korte, M. & Bonhoeffer, T. Homeostatic shutdown of long-term potentiation in the adult hippocampus. _Proc. Natl Acad. Sci. USA_ 103, 11039–11044


(2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Abraham, W. C., Mason-Parker, S. E., Bear, M. F., Webb, S. & Tate, W. P. Heterosynaptic metaplasticity in the hippocampus


_in vivo_: a BCM-like modifiable threshold for LTP. _Proc. Natl Acad. Sci. USA_ 98, 10924–10929 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Frey, U. & Morris, R. G.


M. Synaptic tagging and long-term potentiation. _Nature_ 385, 533–536 (1997). THIS PAPER DESCRIBED THE CONCEPT OF SYNAPTIC TAGGING FOR THE FIRST TIME. EXPERIMENTAL EVIDENCE WAS PRESENTED FOR


AN INTERACTION BETWEEN A STRONGLY ACTIVATED INPUT PATHWAY AND A WEAKLY ACTIVATED PATHWAY. THIS INTERACTION PROMOTES PROTEIN-SYNTHESIS-DEPENDENT LTP IN THE WEAK PATHWAY. Article  CAS  PubMed


  Google Scholar  * Frey, U. & Morris, R. G. M. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. _Trends Neurosci._ 21, 181–188 (1998). Article


  CAS  PubMed  Google Scholar  * Frey, S., Bergado-Rosado, J., Seidenbecher, T., Pape, H. C. & Frey, J. U. Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by


stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP. _J. Neurosci._ 21, 3697–3703 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Sajikumar, S. & Frey, J. U. Resetting of 'synaptic tags' is time- and activity-dependent in rat hippocampal Ca1 _in vitro_. _Neuroscience_ 129, 503–507 (2004). Article  CAS 


PubMed  Google Scholar  * Young, J. Z. & Nguyen, P. V. Homosynaptic and heterosynaptic inhibition of synaptic tagging and capture of long-term potentiation by previous synaptic activity.


_J. Neurosci._ 25, 7221–7231 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Young, J. Z., Isiegas, C., Abel, T. & Nguyen, P. V. Metaplasticity of the late-phase of


long-term potentiation: a critical role for protein kinase A in synaptic tagging. _Eur. J. Neurosci._ 23, 1784–1794 (2006). Article  PubMed  PubMed Central  Google Scholar  * Sajikumar, S.,


Navakkode, S. & Frey, J. U. Identification of compartment- and process-specific molecules required for “synaptic tagging” during long-term potentiation and long-term depression in


hippocampal CA1. _J. Neurosci._ 27, 5068–5080 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Sajikumar, S., Navakkode, S., Sacktor, T. C. & Frey, J. U. Synaptic tagging


and cross-tagging: the role of protein kinase Mζ in maintaining long-term potentiation but not long-term depression. _J. Neurosci._ 25, 5750–5756 (2005). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Kauderer, B. S. & Kandel, E. R. Capture of a protein synthesis-dependent component of long-term depression. _Proc. Natl Acad. Sci. USA_ 97, 13342–13347 (2000).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Sajikumar, S. & Frey, J. U. Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. _Neurobiol. Learn.


Mem._ 82, 12–25 (2004). Article  CAS  PubMed  Google Scholar  * Govindarajan, A., Kelleher, R. J. & Tonegawa, S. A clustered plasticity model of long-term memory engrams. _Nature Rev.


Neurosci._ 7, 575–583 (2006). Article  CAS  Google Scholar  * Sajikumar, S., Navakkode, S., Korz, V. & Frey, J. U. Cognitive and emotional information processing: protein synthesis and


gene expression. _J. Physiol._ 584, 389–400 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Barco, A., Alarcon, J. M. & Kandel, E. R. Expression of constitutively active


CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. _Cell_ 108, 689–703 (2002). Article  CAS  PubMed  Google Scholar  * Woo, N. H. & Nguyen,


P. V. Protein synthesis is required for synaptic immunity to depotentiation. _J. Neurosci._ 23, 1125–1132 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  * Akirav, I. &


Richter-Levin, G. Priming stimulation in the basolateral amygdala modulates synaptic plasticity in the rat dentate gyrus. _Neurosci. Lett._ 270, 83–86 (1999). Article  CAS  PubMed  Google


Scholar  * Nakao, K., Matsuyama, K., Matsuki, N. & Ikegaya, Y. Amygdala stimulation modulates hippocampal synaptic plasticity. _Proc. Natl Acad. Sci. USA_ 101, 14270–14275 (2004).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Frey, S., Bergado, J. A. & Frey, J. U. Modulation of late phases of long-term potentiation in rat dentate gyrus by stimulation of


the medial septum. _Neuroscience_ 118, 1055–1062 (2003). Article  CAS  PubMed  Google Scholar  * Bergado, J. A., Frey, S., Lopez, J., Almaguer-Melian, W. & Frey, J. U. Cholinergic


afferents to the locus coeruleus and noradrenergic afferents to the medial septum mediate LTP-reinforcement in the dentate gyrus by stimulation of the amygdala. _Neurobiol. Learn. Mem._ 88,


331–341 (2007). Article  CAS  PubMed  Google Scholar  * Zhang, W. & Linden, D. J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. _Nature Rev.


Neurosci._ 4, 885–900 (2003). Article  CAS  Google Scholar  * Magee, J. C. & Johnston, D. Plasticity of dendritic function. _Curr. Opin. Neurobiol._ 15, 334–342 (2005). Article  CAS 


PubMed  Google Scholar  * Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. _Nature Rev. Neurosci._ 7, 563–574 (2006). Article  CAS


  Google Scholar  * Kim, S. J. & Linden, D. J. Ubiquitous plasticity and memory storage. _Neuron_ 56, 582–592 (2007). Article  CAS  PubMed  Google Scholar  * Sah, P. & Bekkers, J. M.


Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: implications for the integration of long-term potentiation. _J. Neurosci._ 16, 4537–4542


(1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Blitzer, R. D., Wong, T., Nouranifar, R., Iyengar, R. & Landau, E. M. Postsynaptic cAMP pathway gates early LTP in


hippocampal CA1 region. _Neuron_ 15, 1403–1414 (1995). Article  CAS  PubMed  Google Scholar  * Le Ray, D., De Sevilla, D. F., Porto, A. B., Fuenzalida, M. & Buno, W. Heterosynaptic


metaplastic regulation of synaptic efficacy in CA1 pyramidal neurons of rat hippocampus. _Hippocampus_ 14, 1011–1025 (2004). Article  PubMed  Google Scholar  * Kim, J., Jung, S.-C., Clemens,


A. M., Petralia, R. S. & Hoffman, D. A. Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. _Neuron_


54, 933–947 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wang, Z. R., Xu, N. L., Wu, C. P., Duan, S. M. & Poo, M. M. Bidirectional changes in spatial dendritic


integration accompanying long-term synaptic modifications. _Neuron_ 37, 463–472 (2003). Article  CAS  PubMed  Google Scholar  * Mittmann, W. & Hausser, M. Linking synaptic plasticity and


spike output at excitatory and inhibitory synapses onto cerebellar purkinje cells. _J. Neurosci._ 27, 5559–5570 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Freund, T. F.


& Buzsaki, G. Interneurons of the hippocampus. _Hippocampus_ 6, 347–470 (1996). Article  CAS  PubMed  Google Scholar  * Kullmann, D. M. & Lamsa, K. P. Long-term synaptic plasticity


in hippocampal interneurons. _Nature Rev. Neurosci._ 8, 687–699 (2007). Article  CAS  Google Scholar  * Pitler, T. A. & Alger, B. E. Postsynaptic spike firing reduces synaptic GABAA


responses in hippocampal pyramidal cells. _J. Neurosci._ 12, 4122–4132 (1992). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wigstrom, H. & Gusstafsson, B. Facilitated


induction of long-lasting potentiation during blockade of inhibition. _Nature_ 301, 603–604 (1983). Article  CAS  PubMed  Google Scholar  * Kerr, D. S. & Abraham, W. C. Cooperative


interactions among afferents govern the induction of homosynaptic long-term depression in the hippocampus. _Proc. Natl Acad. Sci. USA_ 92, 11637–11641 (1995). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Liu, Y. B., Disterhoft, J. F. & Slater, N. T. Activation of metabotropic glutamate receptors induces long-term depression of GABAergic inhibition in


hippocampus. _J. Neurophysiol._ 69, 1000–1004 (1993). Article  CAS  PubMed  Google Scholar  * Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories.


_Nature_ 418, 530–534 (2002). Article  CAS  PubMed  Google Scholar  * Alger, B. E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. _Prog.


Neurobiol._ 68, 247–286 (2002). Article  CAS  PubMed  Google Scholar  * Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses.


_Nature_ 410, 588–592 (2001). Article  CAS  PubMed  Google Scholar  * Carlson, G., Wang, Y. & Alger, B. E. Endocannabinoids facilitate the induction of LTP in the hippocampus. _Nature


Neurosci._ 5, 723–724 (2002). Article  CAS  PubMed  Google Scholar  * Azad, S. C. et al. Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. _J.


Neurosci._ 24, 9953–9961 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chevaleyre, V. & Castillo, P. E. Endocannabinoid-mediated metaplasticity in the hippocampus.


_Neuron_ 43, 871–881 (2004). THIS PAPER CHARACTERIZED A NOVEL MECHANISM OF METAPLASTICITY, NAMELY THE ENDOCANNABINOID-MEDIATED LONG-TERM DEPRESSION OF GABA RELEASE. Article  CAS  PubMed 


Google Scholar  * Chevaleyre, V., Heifets, B. D., Kaeser, P. S., Sudhof, T. C. & Castillo, P. E. Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1α.


_Neuron_ 54, 801–812 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Harvey, C. D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites.


_Nature_ 450, 1195–1200 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis,


learning, and long-term potentiation in mice. _Proc. Natl Acad. Sci. USA_ 96, 13427–13431 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Duffy, S. N., Craddock, K. J., Abel,


T. & Nguyen, P. V. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. _Learn. Mem._ 8, 26–34 (2001). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Foster, T. C., Fugger, H. N. & Cunningham, S. G. Receptor blockade reveals a correspondence between hippocampal-dependent behavior and


experience-dependent synaptic enhancement. _Brain Res._ 871, 39–43 (2000). Article  CAS  PubMed  Google Scholar  * Kim, J. J., Foy, M. R. & Thompson, R. F. Behavioral stress modifies


hippocampal plasticity through _N_-methyl-D-aspartate receptor activation. _Proc. Natl Acad. Sci. USA_ 93, 4750–4753 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Garcia,


R., Musleh, W., Tocco, G., Thompson, R. F. & Baudry, M. Time-dependent blockade of STP and LTP in hippocampal slices following acute stress in mice. _Neurosci. Lett._ 233, 41–44 (1997).


Article  CAS  PubMed  Google Scholar  * Maggio, N. & Segal, M. Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus.


_J. Neurosci._ 27, 5757–5765 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kim, J. J. & Yoon, K. S. Stress: metaplastic effects in the hippocampus. _Trends Neurosci._


21, 505–509 (1998). Article  CAS  PubMed  Google Scholar  * Diamond, D. M., Park, C. R. & Woodson, J. C. Stress generates emotional memories and retrograde amnesia by inducing an


endogenous form of hippocampal LTP. _Hippocampus_ 14, 281–291 (2004). Article  PubMed  Google Scholar  * Abraham, W. C. Stress-related phenomena. _Hippocampus_ 14, 675–676 (2004). Article 


PubMed  Google Scholar  * Shors, T. J. & Thompson, R. F. Acute stress impairs (or induces) synaptic long-term potentiation (LTP) but does not affect paired-pulse facilitation in the


stratum-radiatum of rat hippocampus. _Synapse_ 11, 262–265 (1992). Article  CAS  PubMed  Google Scholar  * Sacchetti, B. et al. Long-lasting hippocampal potentiation and contextual memory


consolidation. _Eur. J. Neurosci._ 13, 2291–2298 (2001). Article  CAS  PubMed  Google Scholar  * Sacchetti, B., Scelfo, B., Tempia, F. & Strata, P. Long-term synaptic changes induced in


the cerebellar cortex by fear conditioning. _Neuron_ 42, 973–982 (2004). Article  CAS  PubMed  Google Scholar  * Sacchetti, B. et al. Time-dependent inhibition of hippocampal LTP _in vitro_


following contextual fear conditioning in the rat. _Eur. J. Neurosci._ 15, 143–150 (2002). Article  PubMed  Google Scholar  * Kirkwood, A., Rioult, M. G. & Bear, M. F.


Experience-dependent modification of synaptic plasticity in visual cortex. _Nature_ 381, 526–528 (1996). Article  CAS  PubMed  Google Scholar  * Philpot, B. D., Espinosa, J. S. & Bear,


M. F. Evidence for altered NMDA receptor function as a basis for metaplasticity in visual cortex. _J. Neurosci._ 23, 5583–5588 (2003). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Quinlan, E. M., Olstein, D. H. & Bear, M. F. Bidirectional, experience-dependent regulation of _N_-methyl-_D_-aspartate receptor subunit composition in the rat visual cortex during


postnatal development. _Proc. Natl Acad. Sci. USA_ 96, 12876–12880 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Quinlan, E. M., Philpot, B. D., Huganir, R. L. & Bear,


M. F. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex _in vivo_. _Nature Neurosci._ 2, 352–357 (1999). Article  CAS  PubMed  Google Scholar  * Bellone, C.


& Nicoll, R. A. Rapid bidirectional switching of synaptic NMDA receptors. _Neuron_ 55, 779–785 (2007). Article  CAS  PubMed  Google Scholar  * Erreger, K., Dravid, S. M., Banke, T. G.,


Wyllie, D. J. A. & Traynelis, S. E. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. _J. Physiol._ 563, 345–358 (2005).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Philpot, B. D., Cho, K. K. A. & Bear, M. F. Obligatory role of NR2A for metaplasticity in visual cortex. _Neuron_ 53, 495–502


(2007). THIS WORK PROVIDED AN ELEGANT DEMONSTRATION THAT THE SUBUNIT COMPOSITION OF NMDARS IS CRITICAL FOR EXPERIENCE-DEPENDENT ALTERATIONS IN PLASTICITY THRESHOLDS IN THE VISUAL CORTEX.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Disterhoft, J. F., Golden, D. T., Read, H. R., Coulter, D. A. & Alkon, D. L. AHP reduction in rabbit hippocampal neurons during


conditioning correlate with acquisition of the learned response. _Brain Res._ 462, 118–125 (1988). Article  CAS  PubMed  Google Scholar  * Alkon, D. L. Voltage-dependent calcium and


potassium ion conductances: a contingency mechanism for an associative learning model. _Science_ 205, 810–816 (1979). Article  CAS  PubMed  Google Scholar  * Kandel, E. R. & Schwartz, J.


H. Molecular biology of learning: modulation of transmitter release. _Science_ 218, 433–443 (1982). Article  CAS  PubMed  Google Scholar  * Moyer, J. R. Jr, Thompson, L. T. &


Disterhoft, J. F. Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. _J. Neurosci._ 16, 5536–5546 (1996). Article  CAS  PubMed  Google


Scholar  * Oh, M. M., Kuo, A. G., Wu, W. W., Sametsky, E. A. & Disterhoft, J. F. Watermaze learning enhances excitability of CA1 pyramidal neurons. _J. Neurophysiol._ 90, 2171–2179


(2003). Article  PubMed  Google Scholar  * Saar, D., Grossman, Y. & Barkai, E. Reduced after-hyperpolarization in rat piriform cortex pyramidal neurons is associated with increased


learning capability during operant conditioning. _Eur. J. Neurosci._ 10, 1518–1523 (1998). Article  CAS  PubMed  Google Scholar  * Cohen-Matsliah, S. I., Brosh, I., Rosenblum, K. &


Barkai, E. A novel role for extracellular signal-regulated kinase in maintaining long-term memory-relevant excitability changes. _J. Neurosci._ 27, 12584–12589 (2007). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Brosh, I., Rosenblum, K. & Barkai, E. Learning-induced modulation of SK channels-mediated effect on synaptic transmission. _Eur. J. Neurosci._ 26,


3253–3260 (2007). Article  PubMed  Google Scholar  * Lebel, D., Grossman, Y. & Barkai, E. Olfactory learning modifies predisposition for long-term potentiation and long-term depression


induction in the rat piriform (olfactory) cortex. _Cereb. Cortex_ 11, 485–489 (2001). Article  CAS  PubMed  Google Scholar  * Quinlan, E. M., Lebel, D., Brosh, I. & Barkai, E. A


molecular mechanism for stabilization of learning-induced synaptic modifications. _Neuron_ 41, 185–192 (2004). Article  CAS  PubMed  Google Scholar  * Disterhoft, J. F. & Oh, M. M.


Learning, aging and intrinsic neuronal plasticity. _Trends Neurosci._ 29, 587–599 (2006). Article  CAS  PubMed  Google Scholar  * Zelcer, I. et al. A cellular correlate of learning-induced


metaplasticity in the hippocampus. _Cereb. Cortex_ 16, 460–468 (2006). THIS PAPER PROVIDED CLEAR EVIDENCE FOR A TYPE OF LEARNING-INDUCED METAPLASTICITY THAT PROMOTES SUBSEQUENT LEARNING OF


OTHER BEHAVIOURS, MEDIATED BY REGULATION OF THE SAHP. Article  PubMed  Google Scholar  * Levenson, J. M. et al. Regulation of histone acetylation during memory formation in the hippocampus.


_J. Biol. Chem._ 279, 40545–40559 (2004). Article  CAS  PubMed  Google Scholar  * Levenson, J. M. et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the


hippocampus. _J. Biol. Chem._ 281, 15763–15773 (2006). Article  CAS  PubMed  Google Scholar  * Miller, C. A., Campbell, S. L. & Sweatt, J. D. DNA methylation and histone acetylation


work in concert to regulate memory formation and synaptic plasticity. _Neurobiol. Learn. Mem._ 17 Sep 2007 [epub ahead of print]. * Clem, R. L., Celikel, T. & Barth, A. L. Ongoing _in


vivo_ experience triggers synaptic metaplasticity in the neocortex. _Science_ 319, 101–104 (2008). Article  CAS  PubMed  Google Scholar  * Oddo, S. et al. Triple-transgenic model of


Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. _Neuron_ 39, 409–421 (2003). THIS PAPER PROVIDED AN IMPORTANT DEMONSTRATION THAT SENSORY


EXPERIENCE CAN CAUSE NMDAR-DEPENDENT LTP. THE LTP SATURATES OWING TO AN NMDAR-DEPENDENT INHIBITION OF ADDITIONAL MGLUR-MEDIATED POTENTIATION. Article  CAS  PubMed  Google Scholar  * Albensi,


B. C. & Janigro, D. Traumatic brain injury and its effects on synaptic plasticity. _Brain Inj._ 17, 653–663 (2003). Article  PubMed  Google Scholar  * Schwarzbach, E., Bonislawski, D.


P., Xiong, G. & Cohen, A. S. Mechanisms underlying the inability to induce area CA1 LTP in the mouse after traumatic brain injury. _Hippocampus_ 16, 541–550 (2006). Article  CAS  PubMed


  PubMed Central  Google Scholar  * Wang, S., Kee, N., Preston, E. & Wojtowicz, J. M. Electrophysiological correlates of neural plasticity compensating for ischemia-induced damage in the


hippocampus. _Exp. Brain Res._ 165, 250–260 (2005). Article  PubMed  Google Scholar  * Goussakov, I. V., Fink, K., Elger, C. E. & Beck, H. Metaplasticity of mossy fiber synaptic


transmission involves altered release probability. _J. Neurosci._ 20, 3434–3441 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kleschevnikov, A. M. et al. Hippocampal


long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. _J. Neurosci._ 24, 8153–8160 (2004). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Huber, K. M., Gallagher, S. M., Warren, S. T. & Bear, M. F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. _Proc. Natl Acad. Sci. USA_


99, 7746–7750 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Picconi, B. et al. Pathological synaptic plasticity in the striatum: implications for Parkinson's disease.


_Neurotoxicology_ 26, 779–783 (2005). Article  CAS  PubMed  Google Scholar  * Kung, V. W. S., Hassam, R., Morton, A. J. & Jones, S. Dopamine-dependent long term potentiation in the


dorsal striatum is reduced in the R6/2 mouse model of Huntington's disease. _Neuroscience_ 146, 1571–1580 (2007). Article  CAS  PubMed  Google Scholar  * Turrigiano, G. G. & Nelson,


S. B. Homeostatic plasticity in the developing nervous system. _Nature Rev. Neurosci._ 5, 97–107 (2004). Article  CAS  Google Scholar  * Thiagarajan, T. C., Lindskog, M. & Tsien, R. W.


Adaptation to synaptic inactivity in hippocampal neurons. _Neuron_ 47, 725–737 (2005). Article  CAS  PubMed  Google Scholar  * Slutsky, I., Sadeghpour, S., Li, B. & Liu, G. S.


Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. _Neuron_ 44, 835–849 (2004). Article  CAS  PubMed  Google Scholar  * Eid, T., Kovacs,


I., Spencer, D. D. & de Lanerolle, N. C. Novel expression of AMPA-receptor subunit GluR1 on mossy cells and CA3 pyramidal neurons in the human epileptogenic hippocampus. _Eur. J.


Neurosci._ 15, 517–527 (2002). Article  PubMed  Google Scholar  * He, H. Y., Hodos, W. & Quinlan, E. M. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual


cortex. _J. Neurosci._ 26, 2951–2955 (2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T. & Hubener, M. Prior experience


enhances plasticity in adult visual cortex. _Nature Neurosci._ 9, 127–132 (2006). THIS IMPORTANT PAPER DEMONSTRATED THAT THE ADULT VISUAL CORTEX IS CAPABLE OF SUBSTANTIAL


EXPERIENCE-DEPENDENT PLASTICITY IF IT HAS PREVIOUSLY BEEN PRIMED BY BRIEF EXPOSURE TO ALTERED VISUAL EXPERIENCE. Article  CAS  PubMed  Google Scholar  * He, H.-Y., Ray, B., Dennis, K. &


Quinlan, E. M. Experience-dependent recovery of vision following chronic deprivation amblyopia. _Nature Neurosci._ 10, 1134–1136 (2007). THIS PAPER PROVIDED A CLINICALLY IMPORTANT


DEMONSTRATION THAT AMBLYOPIA THAT HAS BEEN INDUCED BY MD CAN BE REVERSED IF THE CORTEX IS FIRST PRIMED BY PUTTING ANIMALS IN A DARK ENVIRONMENT JUST PRIOR TO THE REVERSAL PROCEDURES. Article


  CAS  PubMed  Google Scholar  * Sale, A. et al. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. _Nature Neurosci._ 10,


679–681 (2007). Article  CAS  PubMed  Google Scholar  * Ullal, G. R., Ninchoji, T. & Uemura, K. Low frequency stimulation induces an increase in after-discharge thresholds in hippocampal


and amygdaloid kindling. _Epilepsy Res._ 3, 236–247 (1989). Article  Google Scholar  * Hesp, B. R., Clarkson, A. N., Sawant, P. M. & Kerr, D. S. Domoic acid preconditioning and seizure


induction in young and aged rats. _Epilepsy Res._ 76, 103–112 (2007). Article  CAS  PubMed  Google Scholar  * Gidday, J. M. Cerebral preconditioning and ischaemic tolerance. _Nature Rev.


Neurosci._ 7, 437–448 (2006). Article  CAS  Google Scholar  * Schaller, B. & Graf, R. Cerebral ischemic preconditioning. _J. Neurol._ 249, 1503–1511 (2002). Article  CAS  PubMed  Google


Scholar  * Dirnagl, U., Simon, R. P. & Hallenbeck, J. M. Ischemic tolerance and endogenous neuroprotection. _Trends Neurosci._ 26, 248–254 (2003). Article  CAS  PubMed  Google Scholar  *


Thiagarajan, T. C., Lindskog, M., Malgaroli, A. & Tsien, R. W. LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity. _Neuropharmacology_ 52,


156–175 (2007). Article  CAS  PubMed  Google Scholar  * Fusi, S., Drew, P. J. & Abbott, L. F. Cascade models of synaptically stored memories. _Neuron_ 45, 599–611 (2005). THIS PAPER


DETAILED AN INNOVATIVE NETWORK MODEL THAT INCORPORATES MULTIPLE METAPLASTIC STATES INTO THE FUNCTIONALITY OF THE SYNAPSES SO AS TO PROLONG THE DURATION OF MEMORIES STORED IN THE NETWORK.


Article  CAS  PubMed  Google Scholar  * Fusi, S. & Abbott, L. F. Limits on the memory storage capacity of bounded synapses. _Nature Neurosci._ 10, 485–493 (2007). Article  CAS  PubMed 


Google Scholar  * Montgomery, J. M. & Madison, D. V. Discrete synaptic states define a major mechanism of synapse plasticity. _Trends Neurosci._ 27, 744–750 (2004). Article  CAS  PubMed


  Google Scholar  * Ward, B. et al. State-dependent mechanisms of LTP expression revealed by optical quantal analysis. _Neuron_ 52, 649–661 (2006). Article  CAS  PubMed  Google Scholar  *


Yang, X. D. & Faber, D. S. Initial synaptic efficacy influences induction and expression of long-term changes in transmission. _Proc. Natl Acad. Sci. USA_ 88, 4299–4303 (1991). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Barrionuevo, G., Schottler, F. & Lynch, G. The effects of repetitive low-frequency stimulation on control and 'potentiated'


synaptic responses in the hippocampus. _Life Sci._ 27, 2385–2391 (1980). Article  CAS  PubMed  Google Scholar  * Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L.


Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. _Nature_ 405, 955–959 (2000). Article  CAS  PubMed  Google Scholar  * Benuskova, L. &


Abraham, W. STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity. _J. Comp. Neurosci._ 22, 129–133 (2007). Article  Google Scholar  *


Benuskova, L., Diamond, M. E. & Ebner, F. F. Dynamic synaptic modification threshold: computational model of experience-dependent plasticity in adult rat barrel cortex. _Proc. Natl Acad.


Sci. USA_ 91, 4791–4795 (1994). Article  CAS  PubMed  PubMed Central  Google Scholar  * Izhikevich, E. M. & Desai, N. S. Relating STDP to BCM. _Neural Comput._ 15, 1511–1523 (2003).


Article  PubMed  Google Scholar  * Bear, M. F., Cooper, L. N. & Ebner, F. F. A physiological basis for a theory of synapse modification. _Science_ 237, 42–48 (1987). Article  CAS  PubMed


  Google Scholar  * Shouval, H. Z., Bear, M. F. & Cooper, L. N. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. _Proc. Natl Acad. Sci. USA_ 99, 10831–10836


(2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shouval, H. Z., Castellani, G. C., Blais, B. S., Yeung, L. C. & Cooper, L. N. Converging evidence for a simplified


biophysical model of synaptic plasticity. _Biol. Cybern._ 87, 383–391 (2002). Article  PubMed  Google Scholar  * Yeung, L. C., Shouval, H. Z., Blais, B. S. & Cooper, L. N. Synaptic


homeostasis and input selectivity follow from a calcium-dependent plasticity model. _Proc. Natl Acad. Sci. USA_ 101, 14943–14948 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar


  Download references ACKNOWLEDGEMENTS Preparation of this Review was assisted by a James Cook Fellowship from the Royal Society of New Zealand. Metaplasticity research in the author's


laboratory has been supported by grants from the Health Research Council of New Zealand, the New Zealand Marsden Fund and the University of Otago Research Committee. I thank M. Bear for many


years of discussion and collaboration on metaplasticity topics. I thank D. Ireland, J. Wagner and E. Quinlan for comments on an earlier version of this manuscript. AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Department of Psychology and the Brain Health and Repair Research Centre, University of Otago, BOX 56, Dunedin, 9054, New Zealand Wickliffe C. Abraham Authors *


Wickliffe C. Abraham View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Wickliffe C. Abraham. RELATED LINKS RELATED


LINKS DATABASES OMIM Alzheimer's disease Down syndrome Fragile X-linked mental retardation syndrome Huntington's disease Parkinson's disease FURTHER INFORMATION Wickliffe


Abraham's homepage GLOSSARY * Long-term potentiation (LTP). A long-lasting and activity-dependent increase in synaptic efficacy. Canonically it requires activation of the NMDAR subtype


of glutamate receptors; however, different forms of LTP caused by the activation of other receptor subtypes also occur. * Long-term depression (LTD). The converse of LTP: in LTD there is a


long-lasting and activity-dependent decrease in synaptic efficacy. * Excitotoxicity Cellular toxicity involving the activation of glutamate receptors in the CNS. Excessive activation of


these receptors by high concentrations of glutamate or by neurotoxins leads to cell death. * Tetanus A bout of HFS used to elicit activity-dependent synaptic plasticity. The frequency and


duration of the stimulation varies across protocols. * Uncaging The release of a molecule from a photolabile binding partner known as a cage. Cages typically inhibit the biological activity


of the bound ('caged') molecule. A brief flash of light of the appropriate wavelength can photochemically disrupt the structure of the binding partner and render the now uncaged


molecule biologically active. * Calcium/calmodulin-dependent protein kinase II (CaMKII). A multi-functional serine/threonine kinase that is activated by a Ca2+/calmodulin complex. Once


activated, CaMKII can autophosphorylate, leading to autonomous (Ca2+-independent) activity and calmodulin trapping. The α isoform is a major component of the postsynaptic density and a key


component of the LTP induction process. * Slow afterhyperpolarization (slow AHP). A type of membrane hyperpolarization that can last for seconds. It is mediated by the opening of


Ca2+-dependent K+ channels and is generated in response to the firing of one or more postsynaptic Na+ or Ca2+ action potentials. * G-protein-coupled receptors (GPCRs). A large family of


transmembrane receptors that couple extracellular signalling molecules to an intracellular signalling cascade which they trigger by activating a G protein. * Depotentiation A reversal of LTP


that brings synaptic efficacy to a baseline level. There is growing evidence that this process involves mechanisms that are different to those that mediate LTD. * Antidromic stimulation The


activation of neuronal cell bodies and dendrites by back-propagating action potentials triggered by electrical stimulation of the cells' axons. * Plasticity-related proteins (PRPs).


Proteins that are synthesized in response to synaptic activation or postsynaptic activity and that are necessary for establishing the persistent forms of LTP and LTD. * Back-propagating


action potentials Action potentials that are initiated at the soma or the axon hillock and that propagate back into the dendrites, where they shape the integration of synaptic activity and


influence the induction of synaptic plasticity. * Active zone A portion of the presynaptic membrane that faces the postsynaptic density across the synaptic cleft. It is the site of synaptic


vesicle clustering and docking and resultant neurotransmitter release. * Critical period A finite but modifiable developmental time window during which experience provides information that


is essential for normal development and permanently alters brain structure and performance. * Eye-blink conditioning A classical conditioning paradigm that is commonly used for the study of


learning. In it, an eye-blink, or the retraction of the nictitating membrane over the eye, is reflexively conditioned by pairing a conditioned neutral stimulus such as a tone with an


aversive stimulus such as an air-puff to the eye. After sufficient pairings the conditioned stimulus can elicit the eye-blink response by itself. * Memory consolidation A


protein-synthesis-dependent process of memory stabilization occuring over hours in animals and for up to years in humans that renders the memory resistant to change. * Amblyopia Poor vision,


usually occurring in one eye, that is associated with a prolonged period of indistinct visual stimulation or visual system dysfunction during development. * Ischaemic preconditioning (IPC).


A phenomenon observed both clinically and experimentally whereby a mild ischaemic event 'primes' a tissue by activating endogenous cellular protective mechanisms that amelioriate


the neurotoxic outcome of a later, more severe ischaemic event. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Abraham, W. Metaplasticity: tuning


synapses and networks for plasticity. _Nat Rev Neurosci_ 9, 387 (2008). https://doi.org/10.1038/nrn2356 Download citation * Issue Date: May 2008 * DOI: https://doi.org/10.1038/nrn2356 SHARE


THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to


clipboard Provided by the Springer Nature SharedIt content-sharing initiative