Mutational effects and the evolution of new protein functions

Mutational effects and the evolution of new protein functions


Play all audios:

Loading...

KEY POINTS * The divergence of new genes and proteins occurs through mutations that modulate protein function. The effects of these mutations are pleiotropic, thus imposing trade-offs


between selection pressures for the existing function and the newly evolving one and among the protein's activity, stability and dosage. * Various compensatory and buffering mechanisms,


such as gene duplication, upregulation of expression, stabilizing mutations and chaperone folding assistance, can alleviate these trade-offs and so facilitate functional divergence. *


Despite buffering effects, the fitness distribution of mutations at the protein level, and for whole organisms, is such that most of the mutations are either neutral or deleterious. This


results in the rapid and irreversible non-functionalization of proteins that accumulate mutations under no selection. * The distribution of fitness effects of mutations for whole organisms


is comparable, and possibly even more deleterious, than that of protein mutations. * Duplication underlies the divergence of new genes and proteins. Duplication is almost as frequent as


point mutations and is a common mechanism for resolving the trade-off conflicts that arise owing to parallel selection pressures. These pressures may regard the existing and the new function


and maintenance of the protein's structural stability. * Duplication, and the emergence of new genes and proteins, may occur at different stages of the divergence process. The


selection pressures that act on the gene and its duplicate may differ, giving rise to different mechanisms of divergence. These mechanisms are described under three schematic models —


Ohno's model, the 'divergence before duplication' (DPD) model and the sub-functionalization model. * In Ohno's model of divergence, duplication is a neutral event. The


duplicated copy of the protein drifts under no selection until a new function becomes under selection. The downside of this model is that under no selection, non-functionalization of the


drifting protein is inevitable. Its advantage is that divergence is independent of trade-offs between the new and existing functions. * The DPD model is based on a 'generalist'


intermediate that confers a selectable degree of both the new and existing functions. Duplication occurs after the acquisition of a new function, and occurs under positive selection to


increase protein dosage and/or alleviate trade-offs that make the acquisition of new function depend on loss of the existing one. * The sub-functionalization model combines elements of the


DPD model and Ohno's model. Duplication is initially a neutral event, but once mutations that partially reduce protein activity or dosage appear, both copies must remain functional.


Duplication therefore enables a larger genetic variability to accumulate, thereby facilitating the emergence of new functions. * The DPD and sub-functionalization models are both based on


mutations with adaptive potential initially accumulating as neutral. As such, they are related to the notions of hidden or apparently neutral variation and of neutral networks. ABSTRACT The


divergence of new genes and proteins occurs through mutations that modulate protein function. However, mutations are pleiotropic and can have different effects on organismal fitness


depending on the environment, as well as opposite effects on protein function and dosage. We review the pleiotropic effects of mutations. We discuss how they affect the evolution of gene and


protein function, and how these complex mutational effects dictate the likelihood and mechanism of gene duplication and divergence. We propose several factors that can affect the divergence


of new protein functions, including mutational trade-offs and hidden, or apparently neutral, variation. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS FUNCTIONAL SYNONYMOUS MUTATIONS AND THEIR


EVOLUTIONARY CONSEQUENCES Article 20 May 2025 THE POPULATION GENOMICS OF ADAPTIVE LOSS OF FUNCTION Article Open access 11 February 2021 CHANGES IN THE DISTRIBUTION OF FITNESS EFFECTS AND


ADAPTIVE MUTATIONAL SPECTRA FOLLOWING A SINGLE FIRST STEP TOWARDS ADAPTATION Article Open access 31 August 2021 REFERENCES * Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how


duplicated genes find new functions. _Nature Rev. Genet._ 9, 938–950 (2008). CAS  PubMed  Google Scholar  * Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and


distinguishing between models. _Nature Rev. Genet._ 11, 97–108 (2010). CAS  PubMed  Google Scholar  * DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence


space: a biophysical view of protein evolution. _Nature Rev. Genet._ 6, 678–687 (2005). CAS  PubMed  Google Scholar  * Pal, C., Papp, B. & Lercher, M. J. An integrated view of protein


evolution. _Nature Rev. Genet._ 7, 337–348 (2006). CAS  PubMed  Google Scholar  * Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional


synthesis. _Nature Rev. Genet._ 8, 675–688 (2007). CAS  PubMed  Google Scholar  * Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. _Curr. Opin.


Struct. Biol._ 19, 596–604 (2009). CAS  PubMed  Google Scholar  * Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. _Nature Rev. Genet._ 8, 610–618


(2007). CAS  PubMed  Google Scholar  * Camps, M., Herman, A., Loh, E. & Loeb, L. A. Genetic constraints on protein evolution. _Crit. Rev. Biochem. Mol. Biol._ 42, 313–326 (2007). CAS 


PubMed  Google Scholar  * Bloom, J. D. et al. Thermodynamic prediction of protein neutrality. _Proc. Natl Acad. Sci. USA_ 102, 606–611 (2005). CAS  PubMed  PubMed Central  Google Scholar  *


Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. _Nature_ 444, 929–932 (2006).


CAS  PubMed  Google Scholar  * Bershtein, S. & Tawfik, D. S. Ohno's model revisited: measuring the frequency of potentially adaptive mutations under various mutational drifts. _Mol.


Biol. Evol._ 25, 2311–2318 (2008). CAS  PubMed  Google Scholar  * Hecky, J. & Muller, K. M. Structural perturbation and compensation by directed evolution at physiological temperature


leads to thermostabilization of β-lactamase. _Biochemistry_ 44, 12640–12654 (2005). CAS  PubMed  Google Scholar  * Yue, P. & Moult, J. Identification and analysis of deleterious human


SNPs. _J. Mol. Biol._ 356, 1263–1274 (2006). CAS  PubMed  Google Scholar  * Tokuriki, N., Oldfield, C. J., Uversky, V. N., Berezovsky, I. N. & Tawfik, D. S. Do viral proteins possess


unique biophysical features? _Trends Biochem. Sci._ 34, 53–59 (2009). CAS  PubMed  Google Scholar  * Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme


constrained by stability and activity trade-offs. _J. Mol. Biol._ 320, 85–95 (2002). CAS  PubMed  Google Scholar  * Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein


stability and new functions trade off. _PLoS Comput. Biol._ 4, e1000002 (2008). PubMed  PubMed Central  Google Scholar  * Levin, K. B. et al. Following evolutionary paths to protein–protein


interactions with high affinity and selectivity. _Nature Struct. Mol. Biol._ 16, 1049–1055 (2009). CAS  Google Scholar  * Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J. &


Taddei, F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. _Proc. Natl Acad. Sci. USA_ 105, 3076–3081 (2008). CAS  PubMed  PubMed Central 


Google Scholar  * McLoughlin, S. Y. & Copley, S. D. A compromise required by gene sharing enables survival: implications for evolution of new enzyme activities. _Proc. Natl Acad. Sci.


USA_ 105, 13497–13502 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Vick, J. E., Schmidt, D. M. & Gerlt, J. A. Evolutionary potential of (β/α)8-barrels: _in vitro_ enhancement


of a 'new' reaction in the enolase superfamily. _Biochemistry_ 44, 11722–11729 (2005). CAS  PubMed  Google Scholar  * Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a


mechanistic and evolurtionary perpective. _Ann. Rev. Biochem._ 79, 471–505 (2010). CAS  PubMed  Google Scholar  * Aharoni, A. et al. The 'evolvability' of promiscuous protein


functions. _Nature Genet._ 37, 73–76 (2005). CAS  PubMed  Google Scholar  * Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. _Science_ 324, 203–207 (2009). CAS  PubMed 


Google Scholar  * Scannell, D. R. & Wolfe, K. H. A burst of protein sequence evolution and a prolonged period of asymmetric evolution follow gene duplication in yeast. _Genome Res._ 18,


137–147 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Kaessmann, H. Genetics. More than just a copy. _Science_ 325, 958–959 (2009). PubMed  Google Scholar  * Parker, H. G. et al. An


expressed _fgf4_ retrogene is associated with breed-defining chondrodysplasia in domestic dogs. _Science_ 325, 995–998 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Andersson, D.


I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. _Annu. Rev. Genet._ 43, 167–195 (2009). CAS  PubMed  Google Scholar  * Schimke, R. T. Gene amplification in


cultured cells. _J. Biol. Chem._ 263, 5989–5992 (1988). CAS  PubMed  Google Scholar  * Papp, B., Pal, C. & Hurst, L. D. Metabolic network analysis of the causes and evolution of enzyme


dispensability in yeast. _Nature_ 429, 661–664 (2004). CAS  PubMed  Google Scholar  * Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. _Nature Genet._


39, 1256–1260 (2007). CAS  PubMed  Google Scholar  * Fablet, M., Bueno, M., Potrzebowski, L. & Kaessmann, H. Evolutionary origin and functions of retrogene introns. _Mol. Biol. Evol._


26, 2147–2156 (2009). CAS  PubMed  Google Scholar  * Jablonka, E. & Lamb, M. J. _Epigenetic Inheritance and Evolution: The Lamarckian Dimension_ (Oxford Univ. Press, Oxford, UK, 1995).


Google Scholar  * Steele, E. J., Lindley, R. A. & Blanden, R. V. _Lamarck's Signature: How Retrogenes Are Changing Darwin's Natural Selection Paradigm_, (Allen & Unwin;


Perseus Books, Australia, 1988). Google Scholar  * Chen, G. K. et al. Preferential expression of a mutant allele of the amplified _MDR1_ (_ABCB1_) gene in drug-resistant variants of a human


sarcoma. _Genes Chromosomes Cancer_ 34, 372–383 (2002). PubMed  Google Scholar  * Qian, W. & Zhang, J. Gene dosage and gene duplicability. _Genetics_ 179, 2319–2324 (2008). PubMed 


PubMed Central  Google Scholar  * Goldsmith, M. & Tawfik, D. S. Potential role of phenotypic mutations in the evolution of protein expression and stability. _Proc. Natl Acad. Sci. USA_


106, 6197–6202 (2009). CAS  PubMed  PubMed Central  Google Scholar  * Siu, L. K., Ho, P. L., Yuen, K. Y., Wong, S. S. & Chau, P. Y. Transferable hyperproduction of TEM-1 β-lactamase in


_Shigella flexneri_ due to a point mutation in the pribnow box. _Antimicrob. Agents Chemother._ 41, 468–470 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Hall, B. G. Evolution of a


regulated operon in the laboratory. _Genetics_ 101, 335–344 (1982). CAS  PubMed  PubMed Central  Google Scholar  * Hall, B. G. The EBG system of _E. coli_: origin and evolution of a novel


β-galactosidase for the metabolism of lactose. _Genetica_ 118, 143–156 (2003). CAS  PubMed  Google Scholar  * Stoebel, D. M., Dean, A. M. & Dykhuizen, D. E. The cost of expression of


_Escherichia coli_ lac operon proteins is in the process, not in the products. _Genetics_ 178, 1653–1660 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Wagner, A. Energy constraints


on the evolution of gene expression. _Mol. Biol. Evol._ 22, 1365–1374 (2005). CAS  PubMed  Google Scholar  * Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein


disorder and interaction promiscuity are widely associated with dosage sensitivity. _Cell_ 138, 198–208 (2009). CAS  PubMed  Google Scholar  * Veitia, R. A. Gene dosage balance: deletions,


duplications and dominance. _Trends Genet._ 21, 33–35 (2005). CAS  PubMed  Google Scholar  * Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed


proteins evolve slowly. _Proc. Natl Acad. Sci. USA_ 102, 14338–14343 (2005). CAS  PubMed  PubMed Central  Google Scholar  * Fares, M. A., Ruiz- González, M. X., Moya, A., Elena, S. F. &


Barrio, E. Endosymbiotic bacteria: GroEL buffers against deleterious mutations. _Nature_ 417, 398 (2002). CAS  PubMed  Google Scholar  * Rutherford, S., Hirate, Y. & Swalla, B. J. The


Hsp90 capacitor, developmental remodeling, and evolution: the robustness of gene networks and the curious evolvability of metamorphosis. _Crit. Rev. Biochem. Mol. Biol._ 42, 355–372 (2007).


CAS  PubMed  Google Scholar  * Cowen, L. E. & Lindquist, S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. _Science_ 309, 2185–2189 (2005). CAS 


PubMed  Google Scholar  * Parent, K. N., Ranaghan, M. J. & Teschke, C. M. A second-site suppressor of a folding defect functions via interactions with a chaperone network to improve


folding and assembly _in vivo_. _Mol. Microbiol._ 54, 1036–1050 (2004). CAS  PubMed  Google Scholar  * Tokuriki, N. & Tawfik, D. S. Chaperonin overexpression promotes genetic variation


and enzyme evolution. _Nature_ 459, 668–673 (2009). CAS  PubMed  Google Scholar  * Zhang, L. & Watson, L. T. Analysis of the fitness effect of compensatory mutations. _HFSP J._ 3, 47–54


(2009). PubMed  Google Scholar  * Bershtein, S., Goldin, K. & Tawfik, D. S. Intense neutral drifts yield robust and evolvable consensus proteins. _J. Mol. Biol._ 379, 1029–1044 (2008).


CAS  PubMed  Google Scholar  * Hecky, J., Mason, J. M., Arndt, K. M. & Muller, K. M. A general method of terminal truncation, evolution, and re-elongation to generate enzymes of enhanced


stability. _Methods Mol. Biol._ 352, 275–304 (2007). CAS  PubMed  Google Scholar  * Kather, I., Jakob, R. P., Dobbek, H. & Schmid, F. X. Increased folding stability of TEM-1 β-lactamase


by _in vitro_ selection. _J. Mol. Biol._ 383, 238–251 (2008). CAS  PubMed  Google Scholar  * Marciano, D. C. et al. Genetic and structural characterization of an L201P global suppressor


substitution in TEM-1 β-lactamase. _J. Mol. Biol._ 384, 151–164 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Kimura, M. The role of compensatory neutral mutations in molecular


evolution. _J. Genet._ 64, 7–19 (1985). CAS  Google Scholar  * Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. _Proc. Natl Acad.


Sci. USA_ 103, 5869–5874 (2006). CAS  PubMed  PubMed Central  Google Scholar  * McIntosh, B. E., Hogenesch, J. B. & Bradfield, C. A. Mammalian Per-Arnt-Sim proteins in environmental


adaptation. _Annu. Rev. Physiol._ 72, 625–645 (2010). CAS  PubMed  Google Scholar  * Lynch, M. Genomics. Gene duplication and evolution. _Science_ 297, 945–947 (2002). CAS  PubMed  Google


Scholar  * Beckmann, J. S., Estivill, X. & Antonarakis, S. E. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. _Nature Rev.


Genet._ 8, 639–646 (2007). CAS  PubMed  Google Scholar  * Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. _Nature Rev. Genet._ 10,


551–564 (2009). CAS  PubMed  Google Scholar  * Liao, B. Y. & Zhang, J. Null mutations in human and mouse orthologs frequently result in different phenotypes. _Proc. Natl Acad. Sci. USA_


105, 6987–6992 (2008). CAS  PubMed  PubMed Central  Google Scholar  * Ohno, S. _Evolution by Gene Duplication_ (Allen & Unwin; Springer, New York, 1970). Google Scholar  * Kimura, M.


& Ota, T. On some principles governing molecular evolution. _Proc. Natl Acad. Sci. USA_ 71, 2848–2852 (1974). CAS  PubMed  PubMed Central  Google Scholar  * Zhang, J. Evolution by gene


duplication: an update. _Trends Ecol. Evol._ 18, 292–298 (2003). Google Scholar  * Hughes, A. L. Adaptive evolution after gene duplication. _Trends Genet._ 18, 433–434 (2002). CAS  PubMed 


Google Scholar  * Lynch, M. & Katju, V. The altered evolutionary trajectories of gene duplicates. _Trends Genet._ 20, 544–549 (2004). CAS  PubMed  Google Scholar  * Kondrashov, F. A.


& Koonin, E. V. A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplications. _Trends Genet._ 20, 287–290 (2004). CAS  PubMed  Google


Scholar  * Bergthorsson, U., Andersson, D. I. & Roth, J. R. Ohno's dilemma: evolution of new genes under continuous selection. _Proc. Natl Acad. Sci. USA_ 104, 17004–17009 (2007).


CAS  PubMed  PubMed Central  Google Scholar  * Kondrashov, F. A. In search of the limits of evolution. _Nature Genet._ 37, 9–10 (2005). CAS  PubMed  Google Scholar  * Boehr, D. D., Nussinov,


R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. _Nature Chem. Biol._ 5, 789–796 (2009). CAS  Google Scholar  * Piatigorsky, J. et al. Gene


sharing by D-crystallin and argininosuccinate lyase. _Proc. Natl Acad. Sci. USA_ 85, 3479–3483 (1988). CAS  PubMed  PubMed Central  Google Scholar  * Piatigorsky, J. _Gene Sharing and


Evolution: The Diversity of Protein Functions_, (Harvard Univ. Press, Cambridge, Massachusetts, USA; London, UK, 2007). Google Scholar  * Lee, Y. N., Nechushtan, H., Figov, N. & Razin,


E. The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FceRI-activated mast cells. _Immunity_ 20, 145–151 (2004). CAS  PubMed  Google Scholar  *


Sedlak, T. W. & Snyder, S. H. Messenger molecules and cell death: therapeutic implications. _JAMA_ 295, 81–89 (2006). CAS  PubMed  Google Scholar  * Rosenberg, H. F. RNase A


ribonucleases and host defense: an evolving story. _J. Leukoc. Biol._ 83, 1079–1087 (2008). CAS  PubMed  Google Scholar  * Jensen, R. A. Enzyme recruitment in evolution of new function.


_Annu. Rev. Microbiol._ 30, 409–425 (1974). Google Scholar  * O'Brien, P. J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. _Chem. Biol._ 6,


R91–R105 (1999). CAS  PubMed  Google Scholar  * Palmer, D. R. et al. Unexpected divergence of enzyme function and sequence: '_N_-acylamino acid racemase' is _o_-succinylbenzoate


synthase. _Biochemistry_ 38, 4252–4258 (1999). CAS  PubMed  Google Scholar  * James, L. C. & Tawfik, D. S. Catalytic and binding poly-reactivities shared by two unrelated proteins: the


potential role of promiscuity in enzyme evolution. _Protein Sci._ 10, 2600–2607 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Afriat, L., Roodveldt, C., Manco, G. & Tawfik, D.


S. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. _Biochemistry_ 45, 13677–13686 (2006). CAS  PubMed  Google Scholar  *


Copley, S. D. Evolution of efficient pathways for degradation of anthropogenic chemicals. _Nature Chem. Biol._ 5, 559–566 (2009). CAS  Google Scholar  * Copley, S. D. _Comprehensive Natural


Products II: Chemistry and Biology_ (eds Mander, L. & Liu, H.-W.) (Elsevier, Oxford, 2010). Google Scholar  * Hughes, A. L. The evolution of functionally novel proteins after gene


duplication. _Proc. Biol. Sci._ 256, 119–124 (1994). CAS  PubMed  Google Scholar  * Barkman, T. & Zhang, J. Evidence for escape from adaptive conflict? _Nature_ 462, e1; discussion e2–e3


(2009). CAS  PubMed  Google Scholar  * Des Marais, D. L. & Rausher, M. D. Escape from adaptive conflict after duplication in an anthocyanin pathway gene. _Nature_ 454, 762–765 (2008).


CAS  PubMed  Google Scholar  * Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. _Genetics_ 154, 459–473 (2000). CAS  PubMed  PubMed Central 


Google Scholar  * Dykhuizen, D. & Hartl, D. L. Selective neutrality of 6PGD allozymes in _E. coli_ and the effects of genetic background. _Genetics_ 96, 801–817 (1980). CAS  PubMed 


PubMed Central  Google Scholar  * Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. _Genetics_ 151, 1531–1545 (1999). CAS  PubMed  PubMed Central 


Google Scholar  * Nei, M. The new mutation theory of phenotypic evolution. _Proc. Natl Acad. Sci. USA_ 104, 12235–12242 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Wagner, A.


_Robustness and Evolvability in Living Systems_ (Princeton Univ. Press, Princeton, USA, 2005). Google Scholar  * Schuster, P. & Fontana, W. Chance and necessity in evolution: lessons


from RNA. _Physica D_ 133, 427–452 (1999). CAS  Google Scholar  * Wroe, R., Chan, H. S. & Bornberg-Bauer, E. A structural model of latent evolutionary potentials underlying neutral


networks in proteins. _HFSP J._ 1, 79–87 (2007). CAS  PubMed  PubMed Central  Google Scholar  * Klassen, J. L. Pathway evolution by horizontal transfer and positive selection is accommodated


by relaxed negative selection upon upstream pathway genes in purple bacterial carotenoid biosynthesis. _J. Bacteriol._ 191, 7500–7508 (2009). CAS  PubMed  PubMed Central  Google Scholar  *


Wloch, D. M., Szafraniec, K., Borts, R. H. & Korona, R. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast _Saccharomyces cerevisiae_. _Genetics_


159, 441–452 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Kivisaar, M. Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. _Mol. Microbiol._


74, 777–781 (2009). CAS  PubMed  Google Scholar  * Wackett, L. P. Questioning our perceptions about evolution of biodegradative enzymes. _Curr. Opin. Microbiol._ 12, 244–251 (2009). CAS 


PubMed  Google Scholar  * Newcomb, R. D., Gleeson, D. M., Yong, C. G., Russell, R. J. & Oakeshott, J. G. Multiple mutations and gene duplications conferring organophosphorus insecticide


resistance have been selected at the Rop-1 locus of the sheep blowfly, _Lucilia cuprina_. _J. Mol. Evol._ 60, 207–220 (2005). CAS  PubMed  Google Scholar  * Patzoldt, W. L., Hager, A. G.,


McCormick, J. S. & Tranel, P. J. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. _Proc. Natl Acad. Sci. USA_ 103, 12329–12334 (2006). CAS  PubMed


  PubMed Central  Google Scholar  * O'Maille, P. E. et al. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. _Nature Chem. Biol._


4, 617–623 (2008). CAS  Google Scholar  * Lozovsky, E. R. et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. _Proc. Natl Acad. Sci. USA_ 106, 12025–12030


(2009). CAS  PubMed  PubMed Central  Google Scholar  * Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths.


_Nature_ 445, 383–386 (2007). CAS  PubMed  Google Scholar  * Kondrashov, A. S., Sunyaev, S. & Kondrashov, F. A. Dobzhansky–Muller incompatibilities in protein evolution. _Proc. Natl


Acad. Sci. USA_ 99, 14878–14883 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow


only very few mutational paths to fitter proteins. _Science_ 312, 111–114 (2006). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS D.S.T. is the incumbent of the Nella and


Leon Benoziyo Professorial Chair. Financial support from the Meil de Botton Aynsley and the EU network BioModularH2 are gratefully acknowledged. We are very grateful to S. Bershtein, N.


Tokuriki, F. Kondrashov and J. G. Zhang for their insightful comments regarding this manuscript and to A. Eyre-Walker for providing the data for the figure in Box 1. AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel Misha Soskine & Dan S. Tawfik Authors * Misha Soskine View author


publications You can also search for this author inPubMed Google Scholar * Dan S. Tawfik View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING


AUTHOR Correspondence to Dan S. Tawfik. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. GLOSSARY * Protein mutations Missense mutations that


occur in encoded open reading frames. * Trade-offs Gains of a new activity or property at the expense of other activities or properties. * Protein stability The capacity of a protein to


adopt its native, functional structure. Stability also correlates with cellular protein levels. * Sub-functionalization Degenerate mutations that result in a gene and its duplicated copy


sharing the burden of one function. * Negative epistasis The combined effect of mutations being more deleterious than expected from their individual effects. * Protein fitness Levels of


physiological function exerted by a given protein variant under a certain selection pressure. * Non-functionalization The complete inactivation of a gene or protein by highly deleterious


mutations. * Neo-functionalization The divergence of a duplicated gene or protein to execute a new function. * ΔΔG The stability difference for a protein variant versus its wild-type


reference (ΔΔG > 0 indicates lower stability). * Disordered domains Protein domains with a high degree of random coil and loop regions and a low degree of highly ordered secondary


structure. * Apparently neutral mutations Mutations that have no significant or observable fitness effect under a given environment. * New-function mutations Mutations that mediate changes


in protein activity, typically by increasing a weak, latent promiscuous function. * New–existing function trade-offs The acquisition of a new function through mutations that undermine the


existing function. * Chaperones Proteins that mediate the correct folding and assembly of other proteins. * Specialists Genes or proteins that exert one specific function with high


proficiency. * Generalist A gene or protein that exerts multiple functions, typically one primary function and additional secondary or promiscuous functions. * New-function–stability


trade-offs Mutations that increase the new, evolving function but reduce protein stability and protein dosage. * Productive variation Genetic variation that does not compromise fitness in


the dwelling environment but holds the potential for adaptation to new environments. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Soskine, M., Tawfik,


D. Mutational effects and the evolution of new protein functions. _Nat Rev Genet_ 11, 572–582 (2010). https://doi.org/10.1038/nrg2808 Download citation * Issue Date: August 2010 * DOI:


https://doi.org/10.1038/nrg2808 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative