Regulators of apoptosis: suitable targets for immune therapy of cancer

Regulators of apoptosis: suitable targets for immune therapy of cancer


Play all audios:

Loading...

KEY POINTS * The clinical application of immunotherapy against cancer is rapidly moving forward in multiple areas, including the adoptive transfer of antitumour-reactive T cells and the use


of 'therapeutic' vaccines. The latter aims at inducing cytotoxic T lymphocytes (CTLs) specific for tumour-associated antigens presented by cancer cells in the context of human


leukocyte antigen (HLA) molecules. * Surprisingly, until recently only limited attention has been focused on identifying the most suitable targets for the induction of clinically relevant


anticancer immune responses, the delineation of the most effective epitopes within these antigens and, finally, inclusion of sets of peptide epitopes best suited for targeting the disease in


question. * The vast majority of malignancies are characterized by defects in apoptosis signalling, which is mediated by two group of apoptosis regulators: the BCL2 family (for example,


BCL2, BCL-XL and MCL1) and the inhibitor of apoptosis proteins (IAP), such as survivin or melanoma IAP. * Such apoptosis regulators are therefore crucial cellular factors contributing to the


pathogenesis and progression of cancer. Consequently, they represent very attractive targets for the design of new anticancer drugs, such as antisense oligonucleotides and small-molecule


BCL2 inhibitors. * Notably, recently spontaneous cellular immune responses against these proteins have been identified as frequent features in cancer patients. Here, we summarize current


knowledge of IAP and BCL2 family proteins as T-cell antigens, report the results of the first exploratory trials using these antigens for immunotherapy and discuss future opportunities, such


as simultaneous targeting of several proteins or combination with conventional chemotherapy, because their expression in tumours is correlated with drug resistance and/or poor prognosis. *


Immunotherapy based on survivin, BCL2 or MCL1 might also compromise endothelial-cell viability and interfere with tumour angiogenesis. Targeting survivin or BCL2 family members in angiogenic


immunotherapy might therefore deliver two distinct and potentially synergistic treatment modalities using a common procedure. * In conclusion, a multi-epitope vaccine targeting regulators


of apoptosis seems to be a promising, universal antitumour vaccine, which addresses both the tumour and the tumour stroma. Moreover, it synergistically boosts the effects of conventional


cytotoxic therapies or radiation. ABSTRACT Harnessing the immune system in the battle against cancer has been the focus of tremendous research efforts during the past two decades. Several


means for achieving this goal, including adoptive transfer of tumour-reactive T cells, systemic or localized administration of immune modulating cytokines and the use of


'therapeutic' vaccines, have been explored. Anti-apoptotic molecules that enhance the survival of cancer cells and facilitate their escape from cytotoxic therapies represent prime


candidates as vaccination antigens. Notably, spontaneous cellular immune responses against these proteins have frequently been identified in cancer patients. Here, we summarize current


knowledge of IAP and BCL2 family proteins as T-cell antigens, report the results of the first explorative trial using these antigens in therapeutic vaccinations against cancer and discuss


future opportunities. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS IMMUNOGENIC CELL DEATH IN CANCER: TARGETING NECROPTOSIS TO INDUCE ANTITUMOUR IMMUNITY Article 07 March 2024 ANTIGEN


PRESENTATION IN CANCER: INSIGHTS INTO TUMOUR IMMUNOGENICITY AND IMMUNE EVASION Article 09 March 2021 CANCER CELL-EXPRESSED BTNL2 FACILITATES TUMOUR IMMUNE ESCAPE VIA ENGAGEMENT WITH


IL-17A-PRODUCING ΓΔ T CELLS Article Open access 11 January 2022 REFERENCES * Van den Eynde, B. J. & Boon, T. Tumor antigens recognized by T lymphocytes. _Int. J. Clin. Lab. Res._ 27,


81–86 (1997). Article  CAS  PubMed  Google Scholar  * Andersen, M. H., Pedersen, L. O., Becker, J. C. & thor Straten, P. Identification of a cytotoxic T lymphocyte response to the


apoptose inhibitor protein survivin in cancer patients. _Cancer Res._ 61, 869–872 (2001). FIRST DESCRIPTION OF NATURAL IMMUNITY AGAINST SURVIVIN IN CANCER PATIENTS. CAS  PubMed  Google


Scholar  * Nestle, F. O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. _Nature Med._ 4, 328–332 (1998). Article  CAS  PubMed  Google Scholar 


* Smyth, M. J., Godfrey, D. I. & Trapani, J. A. A fresh look at tumor immunosurveillance and immunotherapy. _Nature Immunol._ 2, 293–299 (2001). Article  CAS  Google Scholar  * Jocham,


D. et al. Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled


trial. _Lancet_ 363, 594–599 (2004). DATA FROM THE FIRST PHASE III VACCINATION TRIAL SUGGESTING THAT THERAPEUTIC VACCINATION MIGHT HAVE AN IMPACT ON DISEASE. Article  CAS  PubMed  Google


Scholar  * Sosman, J. A. & Sondak, V. K. Melacine: an allogeneic melanoma tumor cell lysate vaccine. _Expert. Rev. Vaccines._ 2, 353–368 (2003). Article  CAS  PubMed  Google Scholar  *


Melief, C. J. et al. Strategies for immunotherapy of cancer. _Adv. Immunol._ 75, 235–282 (2000). Article  CAS  PubMed  Google Scholar  * Novellino, L., Castelli, C. & Parmiani, G. A


listing of human tumor antigens recognized by T cells: March 2004 update. _Cancer Immunol. Immunother._ 54, 187–207 (2004). Article  PubMed  CAS  Google Scholar  * Riker, A. et al. Immune


selection after antigen-specific immunotherapy of melanoma. _Surgery_ 126, 112–120 (1999). Article  CAS  PubMed  Google Scholar  * Lee, K. H. et al. Functional dissociation between local and


systemic immune response during anti-melanoma peptide vaccination. _J. Immunol._ 161, 4183–4194 (1998). CAS  PubMed  Google Scholar  * Pawelec, G., Zeuthen, J. & Kiessling, R. Escape


from host-antitumor immunity. _Crit. Rev. Oncog._ 8, 111–141 (1997). Article  CAS  PubMed  Google Scholar  * Lehmann, F. et al. Differences in the antigens recognized by cytolytic T cells on


two successive metastases of a melanoma patient are consistent with immune selection. _Eur. J. Immunol._ 25, 340–347 (1995). Article  CAS  PubMed  Google Scholar  * Wang, Z. et al.


Molecular analysis of the HLA-A2 antigen loss by melanoma cells SK-MEL- 29.1.22 and SK-MEL-29.1.29. _Cancer Res._ 58, 2149–2157 (1998). CAS  PubMed  Google Scholar  * Jager, E., Jager, D.


& Knuth, A. Antigen-specific immunotherapy and cancer vaccines. _Int. J. Cancer_ 106, 817–820 (2003). Article  PubMed  CAS  Google Scholar  * Hadzantonis, M. & O'Neill, H.


Review: dendritic cell immunotherapy for melanoma. _Cancer Biother. Radiopharm._ 14, 11–22 (1999). Article  CAS  PubMed  Google Scholar  * Brinkman, J. A., Fausch, S. C., Weber, J. S. &


Kast, W. M. Peptide-based vaccines for cancer immunotherapy. _Expert. Opin. Biol. Ther._ 4, 181–198 (2004). Article  CAS  PubMed  Google Scholar  * Klinman, D. M., Currie, D., Gursel, I.


& Verthelyi, D. Use of CpG oligodeoxynucleotides as immune adjuvants. _Immunol. Rev._ 199, 201–216 (2004). Article  CAS  PubMed  Google Scholar  * Walden, P. & Sterry, W. New and


emerging vaccination strategies for prevention and treatment of dermatological diseases. _Expert. Rev. Vaccines._ 3, 421–431 (2004). Article  CAS  PubMed  Google Scholar  * Schadendorf, D.


Melanoma vaccines. _Drug News Perspect._ 13, 85–90 (2000). Article  CAS  PubMed  Google Scholar  * Strengell, M. et al. IL-21 in synergy with IL-15 or IL-18 enhances IFN-γ production in


human NK and T cells. _J. Immunol._ 170, 5464–5469 (2003). Article  CAS  PubMed  Google Scholar  * Coulie, P. G. et al. Cytolytic T-cell responses of cancer patients vaccinated with a MAGE


antigen. _Immunol. Rev._ 188, 33–42 (2002). Article  CAS  PubMed  Google Scholar  * Shangary, S. & Johnson, D. E. Recent advances in the development of anticancer agents targeting cell


death inhibitors in the Bcl-2 protein family. _Leukemia_ 17, 1470–1481 (2003). Article  CAS  PubMed  Google Scholar  * Reed, J. C. Apoptosis-based therapies. _Nature Rev. Drug Discov._ 1,


111–121 (2002). STRATEGIES AIMED AT INHIBITING THE EXPRESSION OR FUNCTIONS OF ANTI-APOPTOTIC PROTEINS HAVE GAINED CONSIDERABLE THERAPEUTIC ATTENTION IN CANCER — FOR EXAMPLE, ANTISENSE


OLIGONUCLEOTIDES OR SMALL-MOLECULE INHIBITORS. Article  CAS  Google Scholar  * Makin, G. & Hickman, J. A. Apoptosis and cancer chemotherapy. _Cell Tissue Res._ 301, 143–152 (2000).


Article  CAS  PubMed  Google Scholar  * Longley, D. B. & Johnston, P. G. Molecular mechanisms of drug resistance. _J. Pathol._ 205, 275–292 (2005). Article  CAS  PubMed  Google Scholar 


* Kim, R., Emi, M., Tanabe, K. & Toge, T. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. _Cancer_ 101, 2491–2502 (2004). Article  CAS  PubMed  Google


Scholar  * Wacheck, V. et al. Bcl-X(L) antisense oligonucleotides radiosensitise colon cancer cells. _Br. J. Cancer_ 89, 1352–1357 (2003). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Wang, S., Yang, D. & Lippman, M. E. Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. _Semin. Oncol._ 30, 133–142 (2003). Article  CAS  PubMed  Google


Scholar  * Falkson, C. I. et al. Phase III trial of dacarbazine versus dacarbazine with interferon α-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon α-2b and


tamoxifen in patients with metastatic malignant melanoma: an Eastern Cooperative Oncology Group study. _J. Clin. Oncol._ 16, 1743–1751 (1998). Article  CAS  PubMed  Google Scholar  * Huang,


D. C. & Strasser, A. BH3-Only proteins-essential initiators of apoptotic cell death. _Cell_ 103, 839–842 (2000). Article  CAS  PubMed  Google Scholar  * Walensky, L. D. et al. Activation


of apoptosis _in vivo_ by a hydrocarbon-stapled BH3 helix. _Science_ 305, 1466–1470 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Letai, A. et al. Distinct BH3 domains


either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. _Cancer Cell_ 2, 183–192 (2002). Article  CAS  PubMed  Google Scholar  * Reed, J. C.


Apoptosis-targeted therapies for cancer. _Cancer Cell_ 3, 17–22 (2003). Article  CAS  PubMed  Google Scholar  * Byrd, J. C. et al. The mechanism of tumor cell clearance by rituximab _in


vivo_ in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. _Blood_ 99, 1038–1043 (2002). Article  CAS  PubMed  Google Scholar  *


Islam, A. et al. High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. _Oncogene_ 19,


617–623 (2000). Article  CAS  PubMed  Google Scholar  * Swana, H. S., Grossman, D., Anthony, J. N., Weiss, R. M. & Altieri, D. C. Tumor content of the antiapoptosis molecule survivin and


recurrence of bladder cancer. _N. Engl. J. Med._ 341, 452–453 (1999). Article  CAS  PubMed  Google Scholar  * Kawasaki, H. et al. Inhibition of apoptosis by survivin predicts shorter


survival rates in colorectal cancer. _Cancer Res._ 58, 5071–5074 (1998). CAS  PubMed  Google Scholar  * Altieri, D. C. Validating survivin as a cancer therapeutic target. _Nature Rev.


Cancer_ 3, 46–54 (2003). AN IN-DEPTH REVIEW, WHICH DESCRIBES THE POTENTIAL APPLICABILITY OF SURVIVIN IN THE CLINIC. Article  CAS  Google Scholar  * Olie, R. A. et al. A novel antisense


oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. _Cancer Res._ 60, 2805–2809 (2000). CAS  PubMed  Google Scholar  *


Gazzaniga, P. et al. Expression and prognostic significance of LIVIN, SURVIVIN and other apoptosis-related genes in the progression of superficial bladder cancer. _Ann. Oncol._ 14, 85–90


(2003). Article  CAS  PubMed  Google Scholar  * Fulda, S., Wick, W., Weller, M. & Debatin, K. M. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce


regression of malignant glioma _in vivo_. _Nature Med._ 8, 808–815 (2002). Article  CAS  PubMed  Google Scholar  * Altieri, D. C., Marchisio, P. C. & Marchisio, C. Survivin apoptosis: an


interloper between cell death and cell proliferation in cancer. _Lab. Invest._ 79, 1327–1333 (1999). CAS  PubMed  Google Scholar  * Ambrosini, G., Adida, C., Sirugo, G. & Altieri, D. C.


Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. _J. Biol. Chem._ 273, 11177–11182 (1998). Article  CAS  PubMed  Google Scholar  * Adida, C. et al.


Prognostic significance of survivin expression in diffuse large B-cell lymphomas. _Blood_ 96, 1921–1925 (2000). CAS  PubMed  Google Scholar  * Grossman, D., McNiff, J. M., Li, F. &


Altieri, D. C. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. _J. Invest Dermatol._ 113, 1076–1081 (1999). Article  CAS  PubMed  Google Scholar  *


Velculescu, V. E. et al. Analysis of human transcriptomes. _Nature Genet._ 23, 387–388 (1999). Article  CAS  PubMed  Google Scholar  * Yang, D., Welm, A. & Bishop, J. M. Cell division


and cell survival in the absence of survivin. _Proc. Natl Acad. Sci. USA_ 101, 15100–15105 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, F. et al. Control of apoptosis


and mitotic spindle checkpoint by survivin. _Nature_ 396, 580–584 (1998). Article  CAS  PubMed  Google Scholar  * Schmitz, M. et al. Generation of survivin-specific CD8+ T effector cells by


dendritic cells pulsed with protein or selected peptides. _Cancer Res._ 60, 4845–4849 (2000). CAS  PubMed  Google Scholar  * Andersen, M. H. et al. Spontaneous cytotoxic T-cell responses


against survivin-derived MHC class I-restricted T-cell epitopes _in situ_ as well as _ex vivo_ in cancer patients. _Cancer Res._ 61, 5964–5968 (2001). CAS  PubMed  Google Scholar  * Reker,


S. et al. HLA-B35-restricted immune responses against survivin in cancer patients. _Int. J. Cancer_ 108, 937–941 (2004). Article  CAS  PubMed  Google Scholar  * Casati, C. et al. The


apoptosis inhibitor protein Survivin induces tumor-specific CD8(+) and CD4(+) T cells in colorectal cancer patients. _Cancer Res._ 63, 4507–4515 (2003). CAS  PubMed  Google Scholar  * Reker,


S. et al. Identification of novel Survivin-derived CTL epitopes. _Cancer Biol. Ther._ 3, (2004). * Schmidt, S. M. et al. Survivin is a shared tumor-associated antigen expressed in a broad


variety of malignancies and recognized by specific cytotoxic T cells. _Blood_ 102, 571–576 (2003). SURVIVIN-SPECIFIC CTL GENERATED FROM HEALTHY DONORS OR LEUKAEMIA PATIENTS ELICITED


CYTOLYTIC ACTIVITY AGAINST A LARGE NUMBER OF TUMOUR CELLS OF DIFFERENT ORIGIN. Article  CAS  PubMed  Google Scholar  * Coughlin, C. M., Vance, B. A., Grupp, S. A. & Vonderheide, R. H.


RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. _Blood_ 103, 2046–2054 (2004).


Article  CAS  PubMed  Google Scholar  * thor Straten, P., Guldberg, P., Grønbæk, K., Zeuthen, J. & Becker, J. C. _In situ_ T-cell responses against melanoma comprise high numbers of


locally expanded T-cell clonotypes. _J. Immunol._ 163, 443–447 (1999). CAS  PubMed  Google Scholar  * Otto, K. et al. Therapy-induced T cell responses against the universal tumor antigen


survivin. _Vaccine_ 23, 884–889 (2004). Article  CAS  Google Scholar  * Pisarev, V. et al. Full-length dominant-negative survivin for cancer immunotherapy. _Clin. Cancer Res._ 9, 6523–6533


(2003). CAS  PubMed  Google Scholar  * Tsuruma, T. et al. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent


colorectal cancer. _J. Transl. Med._ 2, 19 (2004). Article  PubMed  PubMed Central  CAS  Google Scholar  * Kasof, G. M. & Gomes, B. C. Livin, a novel inhibitor of apoptosis protein


family member. _J. Biol. Chem._ 276, 3238–3246 (2001). Article  CAS  PubMed  Google Scholar  * Vucic, D., Stennicke, H. R., Pisabarro, M. T., Salvesen, G. S. & Dixit, V. M. ML-IAP, a


novel inhibitor of apoptosis that is preferentially expressed in human melanomas. _Curr. Biol._ 10, 1359–1366 (2000). Article  CAS  PubMed  Google Scholar  * Ashhab, Y., Alian, A., Polliack,


A., Panet, A. & Ben Yehuda, D. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. _FEBS Lett._ 495, 56–60


(2001). Article  CAS  PubMed  Google Scholar  * Schmollinger, J. C. et al. Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction. _Proc. Natl


Acad. Sci. USA_ 100, 3398–3403 (2003). FIRST DESCRIPTION OF ML-IAP/LIVIN AS A TUMOUR-ASSOCIATED ANTIGEN. Article  CAS  PubMed  PubMed Central  Google Scholar  * Andersen, M. H., Becker, J.


C. & thor Straten, P. Identification of an HLA-A3 restricted CTL epitope from ML-IAP. _J. Invest. Dermatol._ 122, 1336–1337 (2004). Article  PubMed  Google Scholar  * Andersen, M. H.,


Reker, S., Becker, J. C. & thor Straten, P. The melanoma inhibitor of apoptosis protein: a target for spontaneous cytotoxic T cell responses. _J. Invest. Dermatol._ 122, 392–399 (2004).


Article  CAS  PubMed  Google Scholar  * D'Souza, S. et al. Circulating Melan-A/Mart-1 specific cytolytic T lymphocyte precursors in HLA-A2+ melanoma patients have a memory phenotype.


_Int. J. Cancer_ 78, 699–706 (1998). Article  CAS  PubMed  Google Scholar  * Jäger, E. et al. Cytolytic T cell reactivity against melanoma-associated differentiation antigens in peripheral


blood of melanoma patients and healthy individuals. _Melanoma Res._ 6, 419–425 (1996). Article  PubMed  Google Scholar  * Griffioen, M., Borghi, M., Schrier, P. I. & Osanto, S. Detection


and quantification of CD8(+) T cells specific for HLA-A*0201-binding melanoma and viral peptides by the IFN-γ-ELISPOT assay. _Int. J. Cancer_ 93, 549–555 (2001). Article  CAS  PubMed 


Google Scholar  * Rudin, C. M. et al. A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. _Ann. Oncol._ 13,


539–545 (2002). Article  CAS  PubMed  Google Scholar  * Reed, J. C. et al. BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy.


_J. Cell Biochem._ 60, 23–32 (1996). Article  CAS  PubMed  Google Scholar  * Hua, C. et al. Mechanism of bcl-2 activation in human follicular lymphoma. _Oncogene_ 5, 233–235 (1990). CAS 


PubMed  Google Scholar  * Schimmer, A. D., Munk-Pedersen, I., Minden, M. D. & Reed, J. C. Bcl-2 and apoptosis in chronic lymphocytic leukemia. _Curr. Treat. Options. Oncol._ 4, 211–218


(2003). Article  PubMed  Google Scholar  * Wang, H. G., Takayama, S., Rapp, U. R. & Reed, J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. _Proc. Natl


Acad. Sci. USA_ 93, 7063–7068 (1996). Article  CAS  PubMed  PubMed Central  Google Scholar  * Coultas, L. & Strasser, A. The role of the Bcl-2 protein family in cancer. _Semin. Cancer


Biol._ 13, 115–123 (2003). Article  CAS  PubMed  Google Scholar  * Krajewska, M. et al. Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. _Am. J.


Pathol._ 148, 1567–1576 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Zapata, J. M. et al. Expression of multiple apoptosis-regulatory genes in human breast cancer cell lines and


primary tumors. _Breast Cancer Res. Treat._ 47, 129–140 (1998). Article  CAS  PubMed  Google Scholar  * Tang, L. et al. Expression of apoptosis regulators in cutaneous malignant melanoma.


_Clin. Cancer Res._ 4, 1865–1871 (1998). CAS  PubMed  Google Scholar  * Andersen, M. H. et al. Immunogenicity of Bcl-2 in cancer patients. _Blood_ 105, 728–734 (2005). FIRST DESCRIPTION OF


THE NATURAL IMMUNITY AGAINST A MEMBER OF THE BCL2 FAMILY IN CANCER PATIENTS. Article  CAS  PubMed  Google Scholar  * Andersen, M. H., Becker, J. C. & thor Straten, P. The anti-apoptotic


member of the Bcl-2 family Mcl-1 is a CTL target in cancer patients. _Leukemia_ 19, 484–485, (2005). FIRST DESCRIPTION OF THE NATURAL IMMUNITY AGAINST MCL1 IN CANCER PATIENTS. Article  CAS 


PubMed  Google Scholar  * Andersen, M. H., Reker, S., Kvistborg, P., Becker, J. C. & thor Straten, P. Spontaneous immunity against Bcl-XL in cancer patients. _submit f. pub_ (2005).


FIRST DESCRIPTION OF THE NATURAL IMMUNITY AGAINST A MEMBER OF BCL-X L IN CANCER PATIENTS. * Moshynska, O., Sankaran, K., Pahwa, P. & Saxena, A. Prognostic significance of a short


sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. _J. Natl Cancer Inst._ 96, 673–682 (2004). Article  CAS  PubMed  Google Scholar  * Tanaka, K. et al. Expression of


survivin and its relationship to loss of apoptosis in breast carcinomas. _Clin. Cancer Res._ 6, 127–134 (2000). CAS  PubMed  Google Scholar  * Nakagawara, A. Molecular basis of spontaneous


regression of neuroblastoma: role of neurotrophic signals and genetic abnormalities. _Hum. Cell_ 11, 115–124 (1998). CAS  PubMed  Google Scholar  * Cameron, R. B., Spiess, P. J. &


Rosenberg, S. A. Synergistic antitumor activity of tumor-infiltrating lymphocytes, interleukin 2, and local tumor irradiation. Studies on the mechanism of action. _J. Exp. Med._ 171, 249–263


(1990). Article  CAS  PubMed  Google Scholar  * Levings, M. K., Sangregorio, R. & Roncarolo, M. G. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation


and can be expanded _in vitro_ without loss of function. _J. Exp. Med._ 193, 1295–1302 (2001). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ng, W. F. et al. Human CD4(+)CD25(+)


cells: a naturally occurring population of regulatory T cells. _Blood_ 98, 2736–2744 (2001). Article  CAS  PubMed  Google Scholar  * Fry, T. J. & Mackall, C. L. Interleukin-7: master


regulator of peripheral T-cell homeostasis? _Trends Immunol._ 22, 564–571 (2001). Article  CAS  PubMed  Google Scholar  * Tandle, A., Blazer, D. G., III & Libutti, S. K. Antiangiogenic


gene therapy of cancer: recent developments. _J. Transl. Med._ 2, 22 (2004). Article  PubMed  PubMed Central  CAS  Google Scholar  * Niethammer, A. G. et al. A DNA vaccine against VEGF


receptor 2 prevents effective angiogenesis and inhibits tumor growth. _Nature Med._ 8, 1369–1375 (2002). Article  CAS  PubMed  Google Scholar  * Dias, S., Shmelkov, S. V., Lam, G. &


Rafii, S. VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. _Blood_ 99, 2532–2540 (2002). Article  CAS  PubMed  Google


Scholar  * Katoh, O. et al. Vascular endothelial growth factor inhibits apoptotic death in hematopoietic cells after exposure to chemotherapeutic drugs by inducing MCL1 acting as an


antiapoptotic factor. _Cancer Res._ 58, 5565–5569 (1998). CAS  PubMed  Google Scholar  * Xiang, R. et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis


in lung tumor eradication. _Cancer Res._ 65, 553–561 (2005). MURINE MODEL SUGGESTING THAT SURVIVIN-BASED VACCINATION TARGET BOTH THE TUMOUR AND THE TUMOUR STROMA. CAS  PubMed  Google


Scholar  * Nair, S. et al. Synergy between tumor immunotherapy and antiangiogenic therapy. _Blood_ 102, 964–971 (2003). Article  CAS  PubMed  Google Scholar  * Lange-Asschenfeldt, B. et al.


The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses. _J. Invest. Dermatol._ 117, 1036–1041 (2001). Article  CAS  PubMed  Google Scholar  * Quinn, T.


E., Thurman, G. B., Sundell, A. K., Zhang, M. & Hellerqvist, C. G. CM101, a polysaccharide antitumor agent, does not inhibit wound healing in murine models. _J. Cancer Res. Clin.


Oncol._ 121, 253–256 (1995). Article  CAS  PubMed  Google Scholar  * Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of


patients with metastatic melanoma. _Nature Med._ 4, 321–327 (1998). Article  CAS  PubMed  Google Scholar  * Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for


stress-inducible MICA. _Science_ 285, 727–729 (1999). Article  CAS  PubMed  Google Scholar  * Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of


MICA and MICB. _Proc. Natl Acad. Sci. USA._ 96, 6879–6884 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Vetter, C. S. et al. Expression of stress-induced MHC class I


related chain molecules on human melanoma. _J. Invest. Dermatol._ 118, 600–605 (2002). Article  CAS  PubMed  Google Scholar  * Pedersen, L. O. et al. Differential expression of inhibitory or


activating CD94/NKG2 subtypes on MART-1-reactive T cells in vitiligo versus melanoma: a case report. _J. Invest. Dermatol._ 118, 595–599 (2002). Article  CAS  PubMed  Google Scholar  *


Cormier, J. N. et al. Comparative analysis of the _in vivo_ expression of tyrosinase, MART-1/Melan-A, and gp100 in metastatic melanoma lesions: implications for immunotherapy. _J.


Immunother._ 21, 27–31 (1998). Article  CAS  PubMed  Google Scholar  * Maeurer, M. J. et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with


downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. _J. Clin. Invest_ 98, 1633–1641 (1996). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Offringa, R., van der Burg, S. H., Ossendorp, F., Toes, R. E. & Melief, C. J. Design and evaluation of antigen-specific vaccination strategies against


cancer. _Curr. Opin. Immunol._ 12, 576–582 (2000). Article  CAS  PubMed  Google Scholar  * Kursar, M. et al. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. _J. Exp.


Med._ 196, 1585–1592 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Moss, P. A., Rosenberg, W. M. & Bell, J. I. The human T cell receptor in health and disease. _Annu.


Rev. Immunol._ 10, 71–96 (1992). Article  CAS  PubMed  Google Scholar  * Stockwin, L. H., McGonagle, D., Martin, I. G. & Blair, G. E. Dendritic cells: immunological sentinels with a


central role in health and disease. _Immunol. Cell Biol._ 78, 91–102 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Castelli, C. et al. T-cell recognition of


melanoma-associated antigens. _J. Cell Physiol_ 182, 323–331 (2000). Article  CAS  PubMed  Google Scholar  * Siegel, S. et al. Identification of a survivin-derived peptide that induces


HLA-A*0201-restricted antileukemia cytotoxic T lymphocytes. _Leukemia_ 18, 2046–2047 (2004). Article  CAS  PubMed  Google Scholar  * Hirohashi, Y. et al. An HLA-A24-restricted Cytotoxic T


Lymphocyte Epitope of a Tumor-associated Protein, Survivin. _Clin. Cancer Res._ 8, 1731–1739 (2002). CAS  PubMed  Google Scholar  * Siegel, S., Wagner, A., Schmitz, N. & Zeis, M.


Induction of antitumour immunity using survivin peptide-pulsed dendritic cells in a murine lymphoma model. _Br. J. Haematol._ 122, 911–914 (2003). Article  PubMed  Google Scholar  *


Andersen, M. H., Kvistborg, P., Becker, J. C. & thor Straten, P. Identification of an HLA-A1 restricted CTL epitope from Mcl-1. _Leukemia_ 7 April 2005 [Epub ahead of print]. Download


references ACKNOWLEDGEMENTS This work was funded in part by grants from the Danish Medical Research Council, The Danish Cancer Society and Danish Cancer Research Foundation. AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Tumor Immunology Group, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, Copenhagen, Dk-2100, Denmark Mads Hald Andersen, 


Jürgen C. Becker & Per thor Straten * Department of Dermatology, University of Würzburg, Josef-Schneider-Strasse 2, Würzburg, D-97080, Germany Mads Hald Andersen & Jürgen C. Becker


Authors * Mads Hald Andersen View author publications You can also search for this author inPubMed Google Scholar * Jürgen C. Becker View author publications You can also search for this


author inPubMed Google Scholar * Per thor Straten View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Mads Hald


Andersen. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS RELATED LINKS ENTREZ GENE Apollon BAD BAK BAX _BCL2_ BID c-IAP1 c-IAP2


IL-2 IL-7 IL-12 IL-15 IL-18 IL-21 ILP2 MCL1 ML-IAP NIAP survivin TLR4 XIAP NATIONAL CANCER INSTITUTE Chronic lymphocytic cancer melanoma myeloma non-small-lung cancer GLOSSARY * MAJOR


HISTOCOMPATIBILITY COMPLEX A complex of genetic loci in higher vertebrates that encodes a family of cellular antigens that allow the immune system to recognize self from non-self. * ADJUVANT


An agent mixed with an antigen that enhances the immune response to that antigen upon immunization. * CpG DINUCLEOTIDES Cytosine–guanosine pairs inDNA sequences. Oligodeoxynucleotide


sequences that include CpG dinucleotides and certain flanking nucleotides have been found to induce innate immune responses. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Andersen, M., Becker, J. & Straten, P. Regulators of apoptosis: suitable targets for immune therapy of cancer. _Nat Rev Drug Discov_ 4, 399–409 (2005).


https://doi.org/10.1038/nrd1717 Download citation * Issue Date: 01 May 2005 * DOI: https://doi.org/10.1038/nrd1717 SHARE THIS ARTICLE Anyone you share the following link with will be able to


read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative