
Emerging roles of proteases in tumour suppression
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Proteases have long been associated with cancer progression because of their ability to degrade extracellular matrices, which facilitates invasion and metastasis. However, recent
studies have shown that these enzymes target a diversity of substrates and favour all steps of tumour evolution. Unexpectedly, the post-trial studies have also revealed proteases with
tumour-suppressive effects. These effects are associated with more than 30 different enzymes that belong to three distinct protease classes. What are the clinical implications of these
findings? Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to
this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy
now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer
support SIMILAR CONTENT BEING VIEWED BY OTHERS TMPRSS4, A TYPE II TRANSMEMBRANE SERINE PROTEASE, AS A POTENTIAL THERAPEUTIC TARGET IN CANCER Article Open access 03 April 2023 REMODELLING OF
THE TUMOUR MICROENVIRONMENT BY THE KALLIKREIN-RELATED PEPTIDASES Article 31 January 2022 MULTISCALE PROFILING OF PROTEASE ACTIVITY IN CANCER Article Open access 03 October 2022 REFERENCES *
Lopez-Otin, C. & Overall, C. M. Protease degradomics: a new challenge for proteomics. _Nature Rev. Mol. Cell Biol._ 3, 509–519 (2002). Article CAS Google Scholar * Turk, B. Targeting
proteases: successes, failures and future prospects. _Nature Rev. Drug Discov._ 5, 785–799 (2006). Article CAS Google Scholar * Puente, X. S., Sanchez, L. M., Overall, C. M. &
Lopez-Otin, C. Human and mouse proteases: a comparative genomic approach. _Nature Rev. Genet._ 4, 544–558 (2003). Article CAS PubMed Google Scholar * Puente, X. S. & Lopez-Otin, C. A
genomic analysis of rat proteases and protease inhibitors. _Genome Res._ 14, 609–622 (2004). Article CAS PubMed PubMed Central Google Scholar * Fisher, A. Mechanism of the proteolytic
activity of malignant tissue cells. _Nature_ 157, 442 (1946). Article Google Scholar * Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression.
_Nature Rev. Cancer_ 2, 161–174 (2002). Article CAS Google Scholar * Mohamed, M. M. & Sloane, B. F. Cysteine cathepsins: multifunctional enzymes in cancer. _Nature Rev. Cancer_ 6,
764–775 (2006). Article CAS Google Scholar * Borgono, C. A. & Diamandis, E. P. The emerging roles of human tissue kallikreins in cancer. _Nature Rev. Cancer_ 4, 876–890 (2004).
Article CAS Google Scholar * Teitz, T. et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. _Nature Med._ 6, 529–535 (2000).
Article CAS PubMed Google Scholar * Marino, G. et al. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. _J. Biol. Chem._ 278,
3671–3678 (2003). Article CAS PubMed Google Scholar * Hoeller, D., Hecker, C. M. & Dikic, I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. _Nature Rev. Cancer_ 6,
776–788 (2006). Article CAS Google Scholar * Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. _Science_ 295,
2387–2392 (2002). Article CAS PubMed Google Scholar * Overall, C. M. & Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. _Nature Rev.
Cancer_ 2, 657–672 (2002). Article CAS Google Scholar * Balbin, M. et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. _Nature Genet._ 35, 252–257
(2003). Article CAS PubMed Google Scholar * McCawley, L. J., Crawford, H. C., King, L. E., Jr, Mudgett, J. & Matrisian, L. M. A protective role for matrix metalloproteinase-3 in
squamous cell carcinoma. _Cancer Res._ 64, 6965–6972 (2004). Article CAS PubMed Google Scholar * Overall, C. M. & Kleifeld, O. Validating matrix metalloproteinases as drug targets
and anti-targets for cancer therapy. _Nature Rev. Cancer_ 6, 227–239 (2006). Article CAS Google Scholar * Mandruzzato, S., Brasseur, F., Andry, G., Boon, T. & van der Bruggen, P. A
CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. _J. Exp. Med._ 186, 785–793 (1997). Article CAS PubMed PubMed Central Google Scholar * Soung,
Y. H. et al. _CASPASE-8_ gene is inactivated by somatic mutations in gastric carcinomas. _Cancer Res._ 65, 815–821 (2005). CAS PubMed Google Scholar * Harada, K. et al. Deregulation of
caspase 8 and 10 expression in pediatric tumors and cell lines. _Cancer Res._ 62, 5897–5901 (2002). CAS PubMed Google Scholar * Stupack, D. G. et al. Potentiation of neuroblastoma
metastasis by loss of caspase-8. _Nature_ 439, 95–99 (2006). Article CAS PubMed Google Scholar * Shin, M. S. et al. Inactivating mutations of _CASP10_ gene in non-Hodgkin lymphomas.
_Blood_ 99, 4094–4099 (2002). Article CAS PubMed Google Scholar * Park, W. S. et al. Inactivating mutations of the _caspase-10_ gene in gastric cancer. _Oncogene_ 21, 2919–2925 (2002).
Article CAS PubMed Google Scholar * Soung, Y. H. et al. Somatic mutations of _CASP3_ gene in human cancers. _Hum. Genet._ 115, 112–115 (2004). Article CAS PubMed Google Scholar *
Offman, J. et al. Repeated sequences in _CASPASE-5_ and _FANCD2_ but not _NF1_ are targets for mutation in microsatellite-unstable acute leukemia/myelodysplastic syndrome. _Mol. Cancer Res._
3, 251–260 (2005). Article CAS PubMed Google Scholar * Lee, J. W. et al. Mutational analysis of the _CASP6_ gene in colorectal and gastric carcinomas. _APMIS_ 114, 646–650 (2006).
Article CAS PubMed Google Scholar * Soung, Y. H. et al. Inactivating mutations of _CASPASE-7_ gene in human cancers. _Oncogene_ 22, 8048–8052 (2003). Article PubMed CAS Google Scholar
* Bignell, G. R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. _Nature Genet._ 25, 160–165 (2000). Article CAS PubMed Google Scholar * Hellerbrand, C.
et al. Reduced expression of CYLD in human colon and hepatocellular carcinomas. _Carcinogenesis_ 28, 21–27 (2007). Article CAS PubMed Google Scholar * Massoumi, R., Chmielarska, K.,
Hennecke, K., Pfeifer, A. & Fassler, R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. _Cell_ 125, 665–677 (2006). Article CAS PubMed Google
Scholar * Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. _Nature_ 416, 648–653 (2002). Article CAS PubMed Google Scholar * Masuya, D. et
al. The _HAUSP_ gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. _J. Pathol._ 208, 724–732 (2006). Article CAS PubMed Google Scholar *
Kim, J. H. et al. Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. _Nature Cell Biol._ 8, 631–639 (2006). Article CAS PubMed Google Scholar * Levine,
B. Cell biology: autophagy and cancer. _Nature_ 446, 745–747 (2007). Article CAS PubMed Google Scholar * Marino, G. et al. Tissue-specific autophagy alterations and increased
tumorigenesis in mice deficient in Atg4C/autophagin-3. _J. Biol. Chem._ 282, 18573–18583 (2007). Article CAS PubMed Google Scholar * Freije, J. M. et al. Matrix metalloproteinases and
tumor progression. _Adv. Exp. Med. Biol._ 532, 91–107 (2003). Article CAS PubMed Google Scholar * Montel, V. et al. Altered metastatic behavior of human breast cancer cells after
experimental manipulation of matrix metalloproteinase 8 gene expression. _Cancer Res._ 64, 1687–1694 (2004). Article CAS PubMed Google Scholar * Gorrin-Rivas, M. J. et al. Mouse
macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. _Clin. Cancer Res._ 6, 1647–1654 (2000). CAS PubMed Google Scholar
* Acuff, H. B. et al. Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small
cell lung cancer. _Cancer Res._ 66, 7968–7975 (2006). Article CAS PubMed Google Scholar * Houghton, A. M. et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of
lung metastases. _Cancer Res._ 66, 6149–6155 (2006). Article CAS PubMed Google Scholar * Gorrin-Rivas, M. J. et al. Implications of human macrophage metalloelastase and vascular
endothelial growth factor gene expression in angiogenesis of hepatocellular carcinoma. _Ann. Surg._ 231, 67–73 (2000). Article CAS PubMed PubMed Central Google Scholar * Yang, W. et al.
Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. _Cancer_ 91, 1277–1283 (2001). Article CAS PubMed Google Scholar *
Hofmann, H. S. et al. Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. _Clin. Cancer Res._ 11, 1086–1092
(2005). CAS PubMed Google Scholar * Kerkela, E. et al. Metalloelastase (MMP-12) expression by tumour cells in squamous cell carcinoma of the vulva correlates with invasiveness, while
that by macrophages predicts better outcome. _J. Pathol._ 198, 258–269 (2002). Article CAS PubMed Google Scholar * Dong, Z., Kumar, R., Yang, X. & Fidler, I. J. Macrophage-derived
metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. _Cell_ 88, 801–810 (1997). Article CAS PubMed Google Scholar * Uria, J. A. & Lopez-Otin, C.
Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. _Cancer Res._ 60, 4745–4751
(2000). CAS PubMed Google Scholar * Savinov, A. Y. et al. Matrix metalloproteinase 26 proteolysis of the NH2-terminal domain of the estrogen receptor β correlates with the survival of
breast cancer patients. _Cancer Res._ 66, 2716–2724 (2006). Article CAS PubMed Google Scholar * Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary
carcinogenesis. _Cell_ 98, 137–146 (1999). Article CAS PubMed PubMed Central Google Scholar * Witty, J. P., Lempka, T., Coffey, R. J., Jr & Matrisian, L. M. Decreased tumor
formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis. _Cancer Res._ 55, 1401–1406 (1995). CAS
PubMed Google Scholar * Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. _Cell_ 103, 481–490
(2000). Article CAS PubMed PubMed Central Google Scholar * Scorilas, A. et al. Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in
node-negative patients. _Br. J. Cancer_ 84, 1488–1496 (2001). Article CAS PubMed PubMed Central Google Scholar * Takeha, S. et al. Stromal expression of MMP-9 and urokinase receptor is
inversely associated with liver metastasis and with infiltrating growth in human colorectal cancer: a novel approach from immune/inflammatory aspect. _Jpn J. Cancer Res._ 88, 72–81 (1997).
Article CAS PubMed PubMed Central Google Scholar * Pozzi, A., LeVine, W. F. & Gardner, H. A. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis.
_Oncogene_ 21, 272–281 (2002). Article CAS PubMed Google Scholar * Hamano, Y. et al. Physiological levels of tumstatin, a fragment of collagen IV α3 chain, are generated by MMP-9
proteolysis and suppress angiogenesis via αVβ3 integrin. _Cancer Cell_ 3, 589–601 (2003). Article CAS PubMed PubMed Central Google Scholar * Andarawewa, K. L. et al. Dual stromelysin-3
function during natural mouse mammary tumor virus–ras tumor progression. _Cancer Res._ 63, 5844–5849 (2003). CAS PubMed Google Scholar * Pendas, A. M. et al. Diet-induced obesity and
reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. _Mol. Cell Biol._ 24, 5304–5313 (2004). Article CAS PubMed PubMed Central Google Scholar * Jost, M. et
al. Earlier onset of tumoral angiogenesis in matrix metalloproteinase-19-deficient mice. _Cancer Res._ 66, 5234–5241 (2006). Article CAS PubMed Google Scholar * Porter, S., Clark, I. M.,
Kevorkian, L. & Edwards, D. R. The ADAMTS metalloproteinases. _Biochem. J._ 386, 15–27 (2005). Article CAS PubMed PubMed Central Google Scholar * Iruela-Arispe, M. L., Carpizo, D.
& Luque, A. ADAMTS1: a matrix metalloprotease with angioinhibitory properties. _Ann. NY Acad. Sci._ 995, 183–190 (2003). Article CAS PubMed Google Scholar * Kuno, K., Bannai, K.,
Hakozaki, M., Matsushima, K. & Hirose, K. The carboxyl-terminal half region of ADAMTS-1 suppresses both tumorigenicity and experimental tumor metastatic potential. _Biochem. Biophys.
Res. Commun._ 319, 1327–1333 (2004). Article CAS PubMed Google Scholar * Masui, T. et al. Expression of METH-1 and METH-2 in pancreatic cancer. _Clin. Cancer Res._ 7, 3437–3443 (2001).
CAS PubMed Google Scholar * Liu, Y. J., Xu, Y. & Yu, Q. Full-length ADAMTS-1 and the ADAMTS-1 fragments display pro- and antimetastatic activity, respectively. _Oncogene_ 25,
2452–2467 (2006). Article CAS PubMed PubMed Central Google Scholar * Luque, A., Carpizo, D. R. & Iruela-Arispe, M. L. ADAMTS1/METH1 inhibits endothelial cell proliferation by direct
binding and sequestration of VEGF165. _J. Biol. Chem._ 278, 23656–23665 (2003). Article CAS PubMed Google Scholar * Lee, N. V. et al. ADAMTS1 mediates the release of antiangiogenic
polypeptides from TSP1 and 2. _EMBO J._ 25, 5270–5283 (2006). Article CAS PubMed PubMed Central Google Scholar * Porter, S. et al. Dysregulated expression of adamalysin-thrombospondin
genes in human breast carcinoma. _Clin. Cancer Res._ 10, 2429–2440 (2004). Article CAS PubMed Google Scholar * Rocks, N. et al. Expression of a disintegrin and metalloprotease (ADAM and
ADAMTS) enzymes in human non-small-cell lung carcinomas (NSCLC). _Br. J. Cancer_ 94, 724–730 (2006). Article CAS PubMed PubMed Central Google Scholar * Lind, G. E. et al. _ADAMTS1_,
_CRABP1_, and _NR3C1_ identified as epigenetically deregulated genes in colorectal tumorigenesis. _Cell Oncol._ 28, 259–272 (2006). CAS PubMed PubMed Central Google Scholar * Dunn, J. R.
et al. METH-2 silencing and promoter hypermethylation in NSCLC. _Br. J. Cancer_ 91, 1149–1154 (2004). Article CAS PubMed PubMed Central Google Scholar * Dunn, J. R. et al. Expression
of _ADAMTS-8_, a secreted protease with antiangiogenic properties, is downregulated in brain tumours. _Br. J. Cancer_ 94, 1186–1193 (2006). Article CAS PubMed PubMed Central Google
Scholar * Lo, P. H. et al. Identification of a tumor suppressive critical region mapping to 3p14.2 in esophageal squamous cell carcinoma and studies of a candidate tumor suppressor gene,
_ADAMTS9_. _Oncogene_ 26, 148–157 (2007). Article CAS PubMed Google Scholar * Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. _Science_ 314,
268–274 (2006). Article CAS PubMed Google Scholar * Jin, H. et al. Epigenetic identification of _ADAMTS18_ as a novel 16q23.1 tumor suppressor frequently silenced in esophageal,
nasopharyngeal and multiple other carcinomas. _Oncogene_ 4 June 2007 (doi: 10.1038/sj.onc.1210559). * Sumitomo, M., Shen, R. & Nanus, D. M. Involvement of neutral endopeptidase in
neoplastic progression. _Biochim. Biophys. Acta_ 1751, 52–59 (2005). Article CAS PubMed Google Scholar * Goodman, O. B., Jr et al. Neprilysin inhibits angiogenesis via proteolysis of
fibroblast growth factor-2. _J. Biol. Chem._ 281, 33597–33605 (2006). Article CAS PubMed Google Scholar * Sumitomo, M. et al. Synergy in tumor suppression by direct interaction of
neutral endopeptidase with PTEN. _Cancer Cell_ 5, 67–78 (2004). Article CAS PubMed Google Scholar * Osman, I. et al. Loss of neutral endopeptidase and activation of protein kinase B
(Akt) is associated with prostate cancer progression. _Cancer_ 107, 2628–2636 (2006). Article CAS PubMed Google Scholar * Horiguchi, A. et al. Lentiviral vector neutral endopeptidase
gene transfer suppresses prostate cancer tumor growth. _Cancer Gene Ther._ 6 April 2007 (doi: 10.1038/sj.cgt.7701047). * Ghosh, A., Wang, X., Klein, E. & Heston, W. D. Novel role of
prostate-specific membrane antigen in suppressing prostate cancer invasiveness. _Cancer Res._ 65, 727–731 (2005). Article CAS PubMed Google Scholar * Zhang, P. et al. Identification of
_carboxypeptidase of glutamate like-B_ as a candidate suppressor in cell growth and metastasis in human hepatocellular carcinoma. _Clin. Cancer Res._ 12, 6617–6625 (2006). Article CAS
PubMed Google Scholar * Takada, H. et al. _ADAM23_, a possible tumor suppressor gene, is frequently silenced in gastric cancers by homozygous deletion or aberrant promoter
hypermethylation. _Oncogene_ 24, 8051–8060 (2005). Article CAS PubMed Google Scholar * Wahlstrom, A. M. et al. _Rce1_ deficiency accelerates the development of K-RAS-induced
myeloproliferative disease. _Blood_ 109, 763–768 (2007). Article CAS PubMed PubMed Central Google Scholar * Reinheckel, T. et al. The lysosomal cysteine protease cathepsin L regulates
keratinocyte proliferation by control of growth factor recycling. _J. Cell Sci._ 118, 3387–3395 (2005). Article CAS PubMed Google Scholar * Killian, C. S., Corral, D. A., Kawinski, E.
& Constantine, R. I. Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-β and a proteolytic modulation of cell adhesion receptors.
_Biochem. Biophys. Res. Commun._ 192, 940–947 (1993). Article CAS PubMed Google Scholar * Lai, L. C., Erbas, H., Lennard, T. W. & Peaston, R. T. Prostate-specific antigen in breast
cyst fluid: possible role of prostate-specific antigen in hormone-dependent breast cancer. _Int. J. Cancer_ 66, 743–746 (1996). Article CAS PubMed Google Scholar * Fortier, A. H. et al.
Recombinant prostate specific antigen inhibits angiogenesis _in vitro_ and _in vivo_. _Prostate_ 56, 212–219 (2003). Article CAS PubMed Google Scholar * Sher, Y. P. et al. Human
kallikrein 8 protease confers a favorable clinical outcome in non-small cell lung cancer by suppressing tumor cell invasiveness. _Cancer Res._ 66, 11763–11770 (2006). Article CAS PubMed
Google Scholar * Goyal, J. et al. The role for NES1 serine protease as a novel tumor suppressor. _Cancer Res._ 58, 4782–4786 (1998). CAS PubMed Google Scholar * Roman-Gomez, J. et al.
The normal epithelial cell-specific 1 (_NES1_) gene, a candidate tumor suppressor gene on chromosome 19q13.3–4, is downregulated by hypermethylation in acute lymphoblastic leukemia.
_Leukemia_ 18, 362–365 (2004). Article CAS PubMed Google Scholar * Borgono, C. A. et al. Expression and functional characterization of the cancer-related serine protease, human tissue
kallikrein 14. _J. Biol. Chem._ 282, 2405–2422 (2007). Article CAS PubMed Google Scholar * Hooper, J. D. et al. Testisin, a new human serine proteinase expressed by premeiotic testicular
germ cells and lost in testicular germ cell tumors. _Cancer Res._ 59, 3199–3205 (1999). CAS PubMed Google Scholar * Chen, L. M. et al. Down-regulation of prostasin serine protease: a
potential invasion suppressor in prostate cancer. _Prostate_ 48, 93–103 (2001). Article CAS PubMed Google Scholar * Chen, L. M. & Chai, K. X. Prostasin serine protease inhibits
breast cancer invasiveness and is transcriptionally regulated by promoter DNA methylation. _Int. J. Cancer_ 97, 323–329 (2002). Article CAS PubMed Google Scholar * Manton, K. J. et al.
Hypermethylation of the 5′ CpG island of the gene encoding the serine protease Testisin promotes its loss in testicular tumorigenesis. _Br. J. Cancer_ 92, 760–769 (2005). Article CAS
PubMed PubMed Central Google Scholar * Tang, T. et al. Testisin, a glycosyl-phosphatidylinositol- linked serine protease, promotes malignant transformation _in vitro_ and _in vivo_.
_Cancer Res._ 65, 868–878 (2005). CAS PubMed Google Scholar * Chen, M., Chen, L. M. & Chai, K. X. Androgen regulation of prostasin gene expression is mediated by sterol-regulatory
element-binding proteins and SLUG. _Prostate_ 66, 911–920 (2006). Article CAS PubMed Google Scholar * Wesley, U. V., Albino, A. P., Tiwari, S. & Houghton, A. N. A role for dipeptidyl
peptidase IV in suppressing the malignant phenotype of melanocytic cells. _J. Exp. Med._ 190, 311–322 (1999). Article CAS PubMed PubMed Central Google Scholar * Kajiyama, H. et al.
Dipeptidyl peptidase IV overexpression induces up-regulation of E-cadherin and tissue inhibitors of matrix metalloproteinases, resulting in decreased invasive potential in ovarian carcinoma
cells. _Cancer Res._ 63, 2278–2283 (2003). CAS PubMed Google Scholar * Wesley, U. V., McGroarty, M. & Homoyouni, A. Dipeptidyl peptidase inhibits malignant phenotype of prostate
cancer cells by blocking basic fibroblast growth factor signaling pathway. _Cancer Res._ 65, 1325–1334 (2005). Article CAS PubMed Google Scholar * Yamashita, K., Mimori, K., Inoue, H.,
Mori, M. & Sidransky, D. A tumor-suppressive role for trypsin in human cancer progression. _Cancer Res._ 63, 6575–6578 (2003). CAS PubMed Google Scholar * Marsit, C. J., Okpukpara,
C., Danaee, H. & Kelsey, K. T. Epigenetic silencing of the _PRSS3_ putative tumor suppressor gene in non-small cell lung cancer. _Mol. Carcinog._ 44, 146–150 (2005). Article CAS PubMed
Google Scholar * Marsit, C. J. et al. Carcinogen exposure and gene promoter hypermethylation in bladder cancer. _Carcinogenesis_ 27, 112–116 (2006). Article CAS PubMed Google Scholar
* Ramirez-Montagut, T. et al. FAPα, a surface peptidase expressed during wound healing, is a tumor suppressor. _Oncogene_ 23, 5435–5446 (2004). Article CAS PubMed Google Scholar *
Klezovitch, O. et al. Hepsin promotes prostate cancer progression and metastasis. _Cancer Cell_ 6, 185–195 (2004). Article CAS PubMed Google Scholar * Srikantan, V., Valladares, M.,
Rhim, J. S., Moul, J. W. & Srivastava, S. _HEPSIN_ inhibits cell growth/invasion in prostate cancer cells. _Cancer Res._ 62, 6812–6816 (2002). CAS PubMed Google Scholar * Merchan, J.
R. et al. Protease activity of urokinase and tumor progression in a syngeneic mammary cancer model. _J. Natl Cancer Inst._ 98, 756–764 (2006). Article CAS PubMed Google Scholar *
Overall, C. M. et al. Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. _Biol.
Chem._ 385, 493–504 (2004). Article CAS PubMed Google Scholar * Varela, I. et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation.
_Nature_ 437, 564–568 (2005). Article CAS PubMed Google Scholar * Desnick, R. J. & Schuchman, E. H. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders.
_Nature Rev. Genet._ 3, 954–966 (2002). Article CAS PubMed Google Scholar * Karikari, C. A. et al. Targeting the apoptotic machinery in pancreatic cancers using small-molecule
antagonists of the X-linked inhibitor of apoptosis protein. _Mol. Cancer Ther._ 6, 957–966 (2007). Article CAS PubMed PubMed Central Google Scholar * Brummelkamp, T. R., Nijman, S. M.,
Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. _Nature_ 424, 797–801 (2003). Article CAS PubMed Google Scholar *
DiPaola, R. S. et al. Characterization of a novel prostate-specific antigen-activated peptide–doxorubicin conjugate in patients with prostate cancer. _J. Clin. Oncol._ 20, 1874–1879 (2002).
Article CAS PubMed Google Scholar * McIntyre, J. O. & Matrisian, L. M. Molecular imaging of proteolytic activity in cancer. _J. Cell Biochem._ 90, 1087–1097 (2003). Article CAS
PubMed Google Scholar * Sloane, B. F., Sameni, M., Podgorski, I., Cavallo-Medved, D. & Moin, K. Functional imaging of tumor proteolysis. _Annu. Rev. Pharmacol. Toxicol._ 46, 301–315
(2006). Article CAS PubMed Google Scholar Download references ACKNOWLEDGEMENTS We thank all members of our laboratories for their helpful comments on the manuscript and apologize for
omission of relevant works owing to space constraints. We especially thank J.P. Freije, X.S. Puente, G.R. Ordoñez and J. Quigley for helpful insights. C.L-O. is supported by grants from
Ministerio de Educación y Ciencia, European Union, Fundación M. Botín, Fundación La Caixa and Fundación Lilly. L.M. is supported by grants from the National Cancer Institute, US National
Institutes of Health, the US Department of Defense, and the American Cancer Society. The Instituto Universitario de Oncología is supported by Obra Social Cajastur-Asturias, Spain. AUTHOR
INFORMATION AUTHORS AND AFFILIATIONS * Carlos López-Otín is at the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de
Oviedo, 33006 Oviedo, Spain., Carlos López-Otín * Lynn M. Matrisian is at the Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232-6840, USA., Lynn M. Matrisian
Authors * Carlos López-Otín View author publications You can also search for this author inPubMed Google Scholar * Lynn M. Matrisian View author publications You can also search for this
author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Carlos López-Otín. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED
LINKS RELATED LINKS DATABASES OMIM familial cylindromatosis FURTHER INFORMATION Carlos López-Otín's homepage Lynn M. Matrisian's homepage MEROPS — the peptidase database RIGHTS
AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE López-Otín, C., Matrisian, L. Emerging roles of proteases in tumour suppression. _Nat Rev Cancer_ 7, 800–808
(2007). https://doi.org/10.1038/nrc2228 Download citation * Issue Date: October 2007 * DOI: https://doi.org/10.1038/nrc2228 SHARE THIS ARTICLE Anyone you share the following link with will
be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt
content-sharing initiative