
Genetic engineering of untransformable coagulase-negative staphylococcal pathogens
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN
Play all audios:
ABSTRACT Coagulase-negative staphylococci (CoNS) are recognized as significant opportunistic pathogens. However, current knowledge of virulence mechanisms is very limited because a
significant proportion of CoNS are refractory to available techniques for DNA transformation. We describe an efficient protocol for plasmid transfer using bacteriophage Φ187, which can
transduce plasmid DNA to a wide range of CoNS from a unique, engineered _Staphylococcus aureus_ strain. The use of a restriction-deficient, modification-proficient _S. aureus_ PS187 mutant,
which has a CoNS-type bacteriophage surface receptor, allows plasmid transfer to CoNS even when they are refractory to electroporation. Once the Φ187 titer reaches 109 plaque-forming units
per milliliter, plasmid transfer can be accomplished within 1–2 d. Thus, our protocol is a major technical advance offering attractive opportunities for research on CoNS-mediated infections.
Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this
journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now
Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer
support SIMILAR CONTENT BEING VIEWED BY OTHERS NATURAL TRANSFORMATION ALLOWS TRANSFER OF SCC_MEC_-MEDIATED METHICILLIN RESISTANCE IN _STAPHYLOCOCCUS AUREUS_ BIOFILMS Article Open access 05
May 2022 ACAPSULAR _STAPHYLOCOCCUS AUREUS_ WITH A NON-FUNCTIONAL _AGR_ REGAINS CAPSULE EXPRESSION AFTER PASSAGE THROUGH THE BLOODSTREAM IN A BACTEREMIA MOUSE MODEL Article Open access 24
August 2020 OPTIMIZING PHAGE-BASED MUTANT RECOVERY AND MINIMIZING HEAT EFFECT IN THE CONSTRUCTION OF TRANSPOSON LIBRARIES IN _STAPHYLOCOCCUS AUREUS_ Article Open access 01 October 2024
REFERENCES * Schneewind, O. & Missiakas, D. Genetic manipulation of _Staphylococcus aureus_. _Curr. Protoc. Microbiol._ 32, 9C.3.1–9C.3.19 (2014). Article Google Scholar * Monk, I.R.
& Foster, T.J. Genetic manipulation of staphylococci-breaking through the barrier. _Front. Cell. Infect. Microbiol._ 2, 49 (2012). Article Google Scholar * Prax, M., Lee, C.Y. &
Bertram, R. An update on the molecular genetics toolbox for staphylococci. _Microbiology_ 159, 421–435 (2013). Article CAS Google Scholar * Seidman, C.E., Struhl, K., Sheen, J. &
Jessen, T. Introduction of plasmid DNA into cells. _Curr. Protoc. Mol. Biol._ 37, 1.8.1–1.8.10 (2001). Google Scholar * Yoshida, N. & Sato, M. Plasmid uptake by bacteria: a comparison
of methods and efficiencies. _Appl. Microbiol. Biotechnol._ 83, 791–798 (2009). Article CAS Google Scholar * Wirth, R., An, F.Y. & Clewell, D.B. Highly efficient protoplast
transformation system for _Streptococcus faecalis_ and a new _Escherichia coli-S_. faecalis shuttle vector. _J. Bacteriol._ 165, 831–836 (1986). Article CAS Google Scholar * Gotz, F.,
Ahrne, S. & Lindberg, M. Plasmid transfer and genetic recombination by protoplast fusion in staphylococci. _J. Bacteriol._ 145, 74–81 (1981). CAS PubMed PubMed Central Google Scholar
* Bouillaut, L., McBride, S.M. & Sorg, J.A. Genetic manipulation of _Clostridium difficile_. _Curr. Protoc. Microbiol._ 20, 9A.2.1–9A.2.17 (2011). Google Scholar * Thomason, L.C.,
Costantino, N. & Court, D.L. _E. coli_ genome manipulation by P1 transduction. _Curr. Protoc. Mol. Biol._ 79, 1.17.1–1.17.8 (2007). Article Google Scholar * Winstel, V., Kuhner, P.,
Krismer, B., Peschel, A. & Rohde, H. Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage. _Appl. Environ. Microbiol._ 81,
2481–2488 (2015). Article CAS Google Scholar * Augustin, J. & Gotz, F. Transformation of _Staphylococcus epidermidis_ and other staphylococcal species with plasmid DNA by
electroporation. _FEMS Microbiol. Lett._ 54, 203–207 (1990). Article CAS Google Scholar * Kraemer, G. & Iandolo, J. High-frequency transformation of _Staphylococcus aureus_ by
electroporation. _Curr. Microbiol._ 21, 373–376 (1990). Article CAS Google Scholar * Schenk, S. & Laddaga, R.A. Improved method for electroporation of _Staphylococcus aureus_. _FEMS
Microbiol. Lett._ 73, 133–138 (1992). Article CAS Google Scholar * Lofblom, J., Kronqvist, N., Uhlen, M., Stahl, S. & Wernerus, H. Optimization of electroporation-mediated
transformation: _Staphylococcus carnosus_ as model organism. _J. Appl. Microbiol._ 102, 736–747 (2007). Article CAS Google Scholar * Monk, I.R., Shah, I.M., Xu, M., Tan, M.W. &
Foster, T.J. Transforming the untransformable: application of direct transformation to manipulate genetically _Staphylococcus aureus_ and _Staphylococcus epidermidis_. _MBio_ 3, e00277–00211
(2012). Article CAS Google Scholar * Monk, I.R., Tree, J.J., Howden, B.P., Stinear, T.P. & Foster, T.J. Complete bypass of restriction systems for major _Staphylococcus aureus_
lineages. _MBio_ 6, e00308–00315 (2015). Article CAS Google Scholar * Otto, M. _Staphylococcus epidermidis_–the 'accidental' pathogen. _Nat. Rev. Microbiol._ 7, 555–567 (2009).
Article CAS Google Scholar * von Eiff, C., Peters, G. & Heilmann, C. Pathogenesis of infections due to coagulase-negative staphylococci. _Lancet Infect. Dis._ 2, 677–685 (2002).
Article CAS Google Scholar * Marraffini, L.A. & Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. _Nat. Rev. Genet._ 11, 181–190 (2010).
Article CAS Google Scholar * Thomas, C.M. & Nielsen, K.M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. _Nat. Rev. Microbiol._ 3, 711–721 (2005). Article
CAS Google Scholar * Heilbronner, S., Hanses, F., Monk, I.R., Speziale, P. & Foster, T.J. Sortase A promotes virulence in experimental _Staphylococcus lugdunensis_ endocarditis.
_Microbiology_ 159, 2141–2152 (2013). CAS PubMed Google Scholar * Marraffini, L.A. & Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting
DNA. _Science_ 322, 1843–1845 (2008). Article CAS Google Scholar * Winstel, V. et al. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens.
_Nat. Commun._ 4, 2345 (2013). Article Google Scholar * Bae, T. & Schneewind, O. Allelic replacement in _Staphylococcus aureus_ with inducible counter-selection. _Plasmid_ 55, 58–63
(2006). Article CAS Google Scholar * Geiger, T. et al. The stringent response of _Staphylococcus aureus_ and its impact on survival after phagocytosis through the induction of
intracellular PSMs expression. _PLoS Pathog._ 8, e1003016 (2012). Article CAS Google Scholar * Peschel, A., Ottenwalder, B. & Gotz, F. Inducible production and cellular location of
the epidermin biosynthetic enzyme EpiB using an improved staphylococcal expression system. _FEMS Microbiol. Lett._ 137, 279–284 (1996). Article CAS Google Scholar * Bruckner, R. A series
of shuttle vectors for _Bacillus subtilis_ and _Escherichia coli_. _Gene_ 122, 187–192 (1992). Article CAS Google Scholar * Li, M. et al. _Staphylococcus aureus_ mutant screen reveals
interaction of the human antimicrobial peptide dermcidin with membrane phospholipids. _Antimicrob. Agents Chemother._ 53, 4200–4210 (2009). Article CAS Google Scholar * Maliszewski, K.L.
& Nuxoll, A.S. Use of electroporation and conjugative mobilization for genetic manipulation of _Staphylococcus epidermidis_. _Methods Mol. Biol._ 1106, 125–134 (2014). Article CAS
Google Scholar * Murray, N.E. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). _Microbiol. Mol. Biol. Rev._ 64, 412–434 (2000). Article CAS
Google Scholar * Waldron, D.E. & Lindsay, J.A. Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into _Staphylococcus aureus_
and between _S. aureus_ isolates of different lineages. _J. Bacteriol._ 188, 5578–5585 (2006). Article CAS Google Scholar * Kwan, T., Liu, J., DuBow, M., Gros, P. & Pelletier, J. The
complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. _Proc. Natl. Acad. Sci. USA_ 102, 5174–5179 (2005). Article CAS Google Scholar * Errington, J. & Pughe, N.
Upper limit for DNA packaging by _Bacillus subtilis_ bacteriophage phi 105: isolation of phage deletion mutants by induction of oversized prophages. _Mol. Gen. Genet._ 210, 347–351 (1987).
Article CAS Google Scholar * Feiss, M., Fisher, R.A., Crayton, M.A. & Egner, C. Packaging of the bacteriophage lambda chromosome: effect of chromosome length. _Virology_ 77, 281–293
(1977). Article CAS Google Scholar * Nurmemmedov, E., Castelnovo, M., Medina, E., Catalano, C.E. & Evilevitch, A. Challenging packaging limits and infectivity of phage lambda. _J.
Mol. Biol._ 415, 263–273 (2012). Article CAS Google Scholar * Lee, P.Y., Costumbrado, J., Hsu, C.Y. & Kim, Y.H. Agarose gel electrophoresis for the separation of DNA fragments. _J.
Vis. Exp._ 10.3791/3923 (2012). Download references ACKNOWLEDGEMENTS This work was supported by German Research Council grants TRR34 and SFB766 to A.P. and Ro2413/4-1 to H.R., and by German
Center for Infection Research (DZIF) grants to H.R. and A.P. AUTHOR INFORMATION Author notes * Volker Winstel Present address: Present address: Department of Microbiology, University of
Chicago, Chicago, Illinois, USA., AUTHORS AND AFFILIATIONS * Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
Volker Winstel, Petra Kühner & Andreas Peschel * German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany Volker Winstel, Petra Kühner & Andreas Peschel
* Institute for Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany Holger Rohde Authors * Volker Winstel View author publications You
can also search for this author inPubMed Google Scholar * Petra Kühner View author publications You can also search for this author inPubMed Google Scholar * Holger Rohde View author
publications You can also search for this author inPubMed Google Scholar * Andreas Peschel View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS
V.W., H.R. and A.P. designed the study. V.W. and P.K. performed the experiments. V.W., P.K. and A.P. wrote the paper. CORRESPONDING AUTHOR Correspondence to Andreas Peschel. ETHICS
DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Winstel, V.,
Kühner, P., Rohde, H. _et al._ Genetic engineering of untransformable coagulase-negative staphylococcal pathogens. _Nat Protoc_ 11, 949–959 (2016). https://doi.org/10.1038/nprot.2016.058
Download citation * Published: 21 April 2016 * Issue Date: May 2016 * DOI: https://doi.org/10.1038/nprot.2016.058 SHARE THIS ARTICLE Anyone you share the following link with will be able to
read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing
initiative