Genetic engineering of untransformable coagulase-negative staphylococcal pathogens

Genetic engineering of untransformable coagulase-negative staphylococcal pathogens


Play all audios:

Loading...

ABSTRACT Coagulase-negative staphylococci (CoNS) are recognized as significant opportunistic pathogens. However, current knowledge of virulence mechanisms is very limited because a


significant proportion of CoNS are refractory to available techniques for DNA transformation. We describe an efficient protocol for plasmid transfer using bacteriophage Φ187, which can


transduce plasmid DNA to a wide range of CoNS from a unique, engineered _Staphylococcus aureus_ strain. The use of a restriction-deficient, modification-proficient _S. aureus_ PS187 mutant,


which has a CoNS-type bacteriophage surface receptor, allows plasmid transfer to CoNS even when they are refractory to electroporation. Once the Φ187 titer reaches 109 plaque-forming units


per milliliter, plasmid transfer can be accomplished within 1–2 d. Thus, our protocol is a major technical advance offering attractive opportunities for research on CoNS-mediated infections.


Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this


journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS NATURAL TRANSFORMATION ALLOWS TRANSFER OF SCC_MEC_-MEDIATED METHICILLIN RESISTANCE IN _STAPHYLOCOCCUS AUREUS_ BIOFILMS Article Open access 05


May 2022 ACAPSULAR _STAPHYLOCOCCUS AUREUS_ WITH A NON-FUNCTIONAL _AGR_ REGAINS CAPSULE EXPRESSION AFTER PASSAGE THROUGH THE BLOODSTREAM IN A BACTEREMIA MOUSE MODEL Article Open access 24


August 2020 OPTIMIZING PHAGE-BASED MUTANT RECOVERY AND MINIMIZING HEAT EFFECT IN THE CONSTRUCTION OF TRANSPOSON LIBRARIES IN _STAPHYLOCOCCUS AUREUS_ Article Open access 01 October 2024


REFERENCES * Schneewind, O. & Missiakas, D. Genetic manipulation of _Staphylococcus aureus_. _Curr. Protoc. Microbiol._ 32, 9C.3.1–9C.3.19 (2014). Article  Google Scholar  * Monk, I.R.


& Foster, T.J. Genetic manipulation of staphylococci-breaking through the barrier. _Front. Cell. Infect. Microbiol._ 2, 49 (2012). Article  Google Scholar  * Prax, M., Lee, C.Y. &


Bertram, R. An update on the molecular genetics toolbox for staphylococci. _Microbiology_ 159, 421–435 (2013). Article  CAS  Google Scholar  * Seidman, C.E., Struhl, K., Sheen, J. &


Jessen, T. Introduction of plasmid DNA into cells. _Curr. Protoc. Mol. Biol._ 37, 1.8.1–1.8.10 (2001). Google Scholar  * Yoshida, N. & Sato, M. Plasmid uptake by bacteria: a comparison


of methods and efficiencies. _Appl. Microbiol. Biotechnol._ 83, 791–798 (2009). Article  CAS  Google Scholar  * Wirth, R., An, F.Y. & Clewell, D.B. Highly efficient protoplast


transformation system for _Streptococcus faecalis_ and a new _Escherichia coli-S_. faecalis shuttle vector. _J. Bacteriol._ 165, 831–836 (1986). Article  CAS  Google Scholar  * Gotz, F.,


Ahrne, S. & Lindberg, M. Plasmid transfer and genetic recombination by protoplast fusion in staphylococci. _J. Bacteriol._ 145, 74–81 (1981). CAS  PubMed  PubMed Central  Google Scholar


  * Bouillaut, L., McBride, S.M. & Sorg, J.A. Genetic manipulation of _Clostridium difficile_. _Curr. Protoc. Microbiol._ 20, 9A.2.1–9A.2.17 (2011). Google Scholar  * Thomason, L.C.,


Costantino, N. & Court, D.L. _E. coli_ genome manipulation by P1 transduction. _Curr. Protoc. Mol. Biol._ 79, 1.17.1–1.17.8 (2007). Article  Google Scholar  * Winstel, V., Kuhner, P.,


Krismer, B., Peschel, A. & Rohde, H. Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage. _Appl. Environ. Microbiol._ 81,


2481–2488 (2015). Article  CAS  Google Scholar  * Augustin, J. & Gotz, F. Transformation of _Staphylococcus epidermidis_ and other staphylococcal species with plasmid DNA by


electroporation. _FEMS Microbiol. Lett._ 54, 203–207 (1990). Article  CAS  Google Scholar  * Kraemer, G. & Iandolo, J. High-frequency transformation of _Staphylococcus aureus_ by


electroporation. _Curr. Microbiol._ 21, 373–376 (1990). Article  CAS  Google Scholar  * Schenk, S. & Laddaga, R.A. Improved method for electroporation of _Staphylococcus aureus_. _FEMS


Microbiol. Lett._ 73, 133–138 (1992). Article  CAS  Google Scholar  * Lofblom, J., Kronqvist, N., Uhlen, M., Stahl, S. & Wernerus, H. Optimization of electroporation-mediated


transformation: _Staphylococcus carnosus_ as model organism. _J. Appl. Microbiol._ 102, 736–747 (2007). Article  CAS  Google Scholar  * Monk, I.R., Shah, I.M., Xu, M., Tan, M.W. &


Foster, T.J. Transforming the untransformable: application of direct transformation to manipulate genetically _Staphylococcus aureus_ and _Staphylococcus epidermidis_. _MBio_ 3, e00277–00211


(2012). Article  CAS  Google Scholar  * Monk, I.R., Tree, J.J., Howden, B.P., Stinear, T.P. & Foster, T.J. Complete bypass of restriction systems for major _Staphylococcus aureus_


lineages. _MBio_ 6, e00308–00315 (2015). Article  CAS  Google Scholar  * Otto, M. _Staphylococcus epidermidis_–the 'accidental' pathogen. _Nat. Rev. Microbiol._ 7, 555–567 (2009).


Article  CAS  Google Scholar  * von Eiff, C., Peters, G. & Heilmann, C. Pathogenesis of infections due to coagulase-negative staphylococci. _Lancet Infect. Dis._ 2, 677–685 (2002).


Article  CAS  Google Scholar  * Marraffini, L.A. & Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. _Nat. Rev. Genet._ 11, 181–190 (2010).


Article  CAS  Google Scholar  * Thomas, C.M. & Nielsen, K.M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. _Nat. Rev. Microbiol._ 3, 711–721 (2005). Article


  CAS  Google Scholar  * Heilbronner, S., Hanses, F., Monk, I.R., Speziale, P. & Foster, T.J. Sortase A promotes virulence in experimental _Staphylococcus lugdunensis_ endocarditis.


_Microbiology_ 159, 2141–2152 (2013). CAS  PubMed  Google Scholar  * Marraffini, L.A. & Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting


DNA. _Science_ 322, 1843–1845 (2008). Article  CAS  Google Scholar  * Winstel, V. et al. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens.


_Nat. Commun._ 4, 2345 (2013). Article  Google Scholar  * Bae, T. & Schneewind, O. Allelic replacement in _Staphylococcus aureus_ with inducible counter-selection. _Plasmid_ 55, 58–63


(2006). Article  CAS  Google Scholar  * Geiger, T. et al. The stringent response of _Staphylococcus aureus_ and its impact on survival after phagocytosis through the induction of


intracellular PSMs expression. _PLoS Pathog._ 8, e1003016 (2012). Article  CAS  Google Scholar  * Peschel, A., Ottenwalder, B. & Gotz, F. Inducible production and cellular location of


the epidermin biosynthetic enzyme EpiB using an improved staphylococcal expression system. _FEMS Microbiol. Lett._ 137, 279–284 (1996). Article  CAS  Google Scholar  * Bruckner, R. A series


of shuttle vectors for _Bacillus subtilis_ and _Escherichia coli_. _Gene_ 122, 187–192 (1992). Article  CAS  Google Scholar  * Li, M. et al. _Staphylococcus aureus_ mutant screen reveals


interaction of the human antimicrobial peptide dermcidin with membrane phospholipids. _Antimicrob. Agents Chemother._ 53, 4200–4210 (2009). Article  CAS  Google Scholar  * Maliszewski, K.L.


& Nuxoll, A.S. Use of electroporation and conjugative mobilization for genetic manipulation of _Staphylococcus epidermidis_. _Methods Mol. Biol._ 1106, 125–134 (2014). Article  CAS 


Google Scholar  * Murray, N.E. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). _Microbiol. Mol. Biol. Rev._ 64, 412–434 (2000). Article  CAS 


Google Scholar  * Waldron, D.E. & Lindsay, J.A. Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into _Staphylococcus aureus_


and between _S. aureus_ isolates of different lineages. _J. Bacteriol._ 188, 5578–5585 (2006). Article  CAS  Google Scholar  * Kwan, T., Liu, J., DuBow, M., Gros, P. & Pelletier, J. The


complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. _Proc. Natl. Acad. Sci. USA_ 102, 5174–5179 (2005). Article  CAS  Google Scholar  * Errington, J. & Pughe, N.


Upper limit for DNA packaging by _Bacillus subtilis_ bacteriophage phi 105: isolation of phage deletion mutants by induction of oversized prophages. _Mol. Gen. Genet._ 210, 347–351 (1987).


Article  CAS  Google Scholar  * Feiss, M., Fisher, R.A., Crayton, M.A. & Egner, C. Packaging of the bacteriophage lambda chromosome: effect of chromosome length. _Virology_ 77, 281–293


(1977). Article  CAS  Google Scholar  * Nurmemmedov, E., Castelnovo, M., Medina, E., Catalano, C.E. & Evilevitch, A. Challenging packaging limits and infectivity of phage lambda. _J.


Mol. Biol._ 415, 263–273 (2012). Article  CAS  Google Scholar  * Lee, P.Y., Costumbrado, J., Hsu, C.Y. & Kim, Y.H. Agarose gel electrophoresis for the separation of DNA fragments. _J.


Vis. Exp._ 10.3791/3923 (2012). Download references ACKNOWLEDGEMENTS This work was supported by German Research Council grants TRR34 and SFB766 to A.P. and Ro2413/4-1 to H.R., and by German


Center for Infection Research (DZIF) grants to H.R. and A.P. AUTHOR INFORMATION Author notes * Volker Winstel Present address: Present address: Department of Microbiology, University of


Chicago, Chicago, Illinois, USA., AUTHORS AND AFFILIATIONS * Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany


Volker Winstel, Petra Kühner & Andreas Peschel * German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany Volker Winstel, Petra Kühner & Andreas Peschel


* Institute for Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany Holger Rohde Authors * Volker Winstel View author publications You


can also search for this author inPubMed Google Scholar * Petra Kühner View author publications You can also search for this author inPubMed Google Scholar * Holger Rohde View author


publications You can also search for this author inPubMed Google Scholar * Andreas Peschel View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS


V.W., H.R. and A.P. designed the study. V.W. and P.K. performed the experiments. V.W., P.K. and A.P. wrote the paper. CORRESPONDING AUTHOR Correspondence to Andreas Peschel. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Winstel, V.,


Kühner, P., Rohde, H. _et al._ Genetic engineering of untransformable coagulase-negative staphylococcal pathogens. _Nat Protoc_ 11, 949–959 (2016). https://doi.org/10.1038/nprot.2016.058


Download citation * Published: 21 April 2016 * Issue Date: May 2016 * DOI: https://doi.org/10.1038/nprot.2016.058 SHARE THIS ARTICLE Anyone you share the following link with will be able to


read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative