Quantitative profiling of the protein coronas that form around nanoparticles

Quantitative profiling of the protein coronas that form around nanoparticles


Play all audios:

Loading...

ABSTRACT Nanoparticle applications in biotechnology and biomedicine are steadily increasing. In biological fluids, proteins bind to nanoparticles that form the protein corona, crucially


affecting the nanoparticles' biological identity. As the corona affects _in vitro_ and/or _in vivo_ nanoparticle applications, we developed a method to obtain time-resolved protein


corona profiles formed on various nanoparticles. After incubation in plasma or a similar biofluid, or after injection into a mouse, the first analytical step is sedimentation of the


nanoparticle-protein complexes through a sucrose cushion, thereby allowing analysis of early corona formation time points. Next, corona profiles are visualized by gel electrophoresis and


quantitatively analyzed after tryptic digestion using label-free liquid chromatography–high-resolution mass spectrometry. In contrast to other approaches, our established methodology allows


the researcher to obtain qualitative and quantitative high-resolution corona signatures. The protocol can be readily extended to the investigation of protein coronas from various


nanomaterials (as an example, we applied this protocol to different silica nanoparticles (SiNPs) and polystyrene nanoparticles (PSNPs)). Depending on the number of samples, the protocol from


nanoparticle-protein complex recovery to data evaluation takes ∼8–12 d to complete. Access through your institution Buy or subscribe This is a preview of subscription content, access via


your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this


article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in


* Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MEASUREMENTS OF HETEROGENEITY IN PROTEOMICS ANALYSIS OF THE 


NANOPARTICLE PROTEIN CORONA ACROSS CORE FACILITIES Article Open access 03 November 2022 IMPROVING ACCURACY AND REPRODUCIBILITY OF MASS SPECTROMETRY CHARACTERIZATION OF PROTEIN CORONAS ON


NANOPARTICLES Article 11 June 2025 MAPPING AND IDENTIFICATION OF SOFT CORONA PROTEINS AT NANOPARTICLES AND THEIR IMPACT ON CELLULAR ASSOCIATION Article Open access 10 September 2020


REFERENCES * Reese, M. Nanotechnology: using co-regulation to bring regulation of modern technologies into the 21st century. _Health Matrix Clevel._ 23, 537–572 (2013). PubMed  Google


Scholar  * Webster, T.J. Interview: Nanomedicine: past, present and future. _Nanomedicine (Lond.)_ 8, 525–529 (2013). Article  CAS  Google Scholar  * Nystrom, A.M. & Fadeel, B. Safety


assessment of nanomaterials: implications for nanomedicine. _J. Control Release_ 161, 403–408 (2012). Article  Google Scholar  * Oberdorster, G. Nanotoxicology: _in vitro-in vivo_ dosimetry.


_Environ. Health Perspect._ 120, A13 (2012). Article  Google Scholar  * Rauscher, H., Sokull-Kluttgen, B. & Stamm, H. The European Commission's recommendation on the definition of


nanomaterial makes an impact. _Nanotoxicology_ 7, 1195–1197 (2013). Article  Google Scholar  * Monopoli, M.P., Aberg, C., Salvati, A. & Dawson, K.A. Biomolecular coronas provide the


biological identity of nanosized materials. _Nat. Nanotechnol._ 7, 779–786 (2012). Article  CAS  Google Scholar  * Monopoli, M.P., Bombelli, F.B. & Dawson, K.A. Nanobiotechnology:


nanoparticle coronas take shape. _Nat. Nanotechnol._ 6, 11–12 (2011). Article  CAS  Google Scholar  * Tenzer, S. et al. Rapid formation of plasma protein corona critically affects


nanoparticle pathophysiology. _Nat. Nanotechnol._ 8, 772–781 (2013). Article  CAS  Google Scholar  * Capriotti, A.L. et al. DNA affects the composition of lipoplex protein corona: a


proteomics approach. _Proteomics_ 11, 3349–3358 (2012). Article  Google Scholar  * Xia, X.R., Monteiro-Riviere, N.A. & Riviere, J.E. An index for characterization of nanomaterials in


biological systems. _Nat. Nanotechnol._ 5, 671–675 (2010). Article  CAS  Google Scholar  * Nel, A.E. et al. Understanding biophysicochemical interactions at the nano-bio interface. _Nat.


Mater._ 8, 543–557 (2009). Article  CAS  Google Scholar  * Tenzer, S. et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive


quantitative proteomic analysis. _ACS Nano_ 5, 7155–7167 (2011). Article  CAS  Google Scholar  * Zhang, H. et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies


nanoparticles with different surface properties and size. _Proteomics_ 11, 4569–4577 (2011). Article  CAS  Google Scholar  * Salvati, A. et al. Transferrin-functionalized nanoparticles lose


their targeting capabilities when a biomolecule corona adsorbs on the surface. _Nat. Nanotechnol_ 8, 137–143 (2013). Article  CAS  Google Scholar  * Wegner, K.D., Jin, Z., Linden, S.,


Jennings, T.L. & Hildebrandt, N. Quantum dot–based Forster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. _ACS Nano_ 7, 7411–7419


(2013). Article  CAS  Google Scholar  * Barkam, S., Saraf, S. & Seal, S. Fabricated micro-nano devices for _in vivo_ and _in vitro_ biomedical applications. _Wiley Interdiscip. Rev.


Nanomed. Nanobiotechnol._ 5, 544–568 (2013). Article  CAS  Google Scholar  * Dobrovolskaia, M.A., Germolec, D.R. & Weaver, J.L. Evaluation of nanoparticle immunotoxicity. _Nat.


Nanotechnol._ 4, 411–414 (2009). Article  CAS  Google Scholar  * Distler, U. et al. Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. _Nat.


Methods_ 11, 167–170 (2014). Article  CAS  Google Scholar  * Meister, S. et al. Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an _in vitro_ blood-brain barrier model.


_Alzheimer's Res. Ther._ 5, 51 (2013). Article  Google Scholar  * Evans, C. et al. An insight into iTRAQ: where do we stand now? _Anal. Bioanal. Chem._ 404, 1011–1027 (2012). Article 


CAS  Google Scholar  * Bantscheff, M., Lemeer, S., Savitski, M.M. & Kuster, B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. _Anal.


Bioanal. Chem._ 404, 939–965 (2012). Article  CAS  Google Scholar  * Tate, S., Larsen, B., Bonner, R. & Gingras, A.C. Label-free quantitative proteomics trends for protein-protein


interactions. _J. Proteomics_ 81, 91–101 (2013). Article  CAS  Google Scholar  * Patel, V.J. et al. A comparison of labeling and label-free mass spectrometry-based proteomics approaches. _J.


Proteome Res._ 8, 3752–3759 (2009). Article  CAS  Google Scholar  * Cai, X. et al. Characterization of carbon nanotube protein corona by using quantitative proteomics. _Nanomedicine_ 9,


583–593 (2013). Article  CAS  Google Scholar  * Farrah, T. et al. A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. _Mol. Cell. Proteomics_


10, M110.006353 (2011). Article  Google Scholar  * Nahnsen, S., Bielow, C., Reinert, K. & Kohlbacher, O. Tools for label-free peptide quantification. _Mol. Cell. Proteomics_ 12, 549–556


(2013). Article  CAS  Google Scholar  * Gethings, L.A. & Connolly, J.B. Simplifying the proteome: analytical strategies for improving peak capacity. _Adv. Exp. Med. Biol._ 806, 59–77


(2014). Article  CAS  Google Scholar  * Gebauer, J.S. et al. Impact of the nanoparticle-protein corona on colloidal stability and protein structure. _Langmuir_ 28, 9673–9679 (2012). Article


  CAS  Google Scholar  * Walczyk, D., Bombelli, F.B., Monopoli, M.P., Lynch, I. & Dawson, K.A. What the cell 'sees' in bionanoscience. _J. Am. Chem. Soc._ 132, 5761–5768


(2010). Article  CAS  Google Scholar  * Casals, E., Pfaller, T., Duschl, A., Oostingh, G.J. & Puntes, V. Time evolution of the nanoparticle protein corona. _ACS Nano_ 4, 3623–3632


(2010). Article  CAS  Google Scholar  * Dell'Orco, D., Lundqvist, M., Oslakovic, C., Cedervall, T. & Linse, S. Modeling the time evolution of the nanoparticle-protein corona in a


body fluid. _PLoS ONE_ 5, e10949 (2010). Article  Google Scholar  * Barran-Berdon, A.L. et al. Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug


delivery. _Langmuir_ 29, 6485–6494 (2013). Article  CAS  Google Scholar  * Natte, K. et al. Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona.


_Colloids Surf. B Biointerfaces_ 104, 213–220 (2013). Article  CAS  Google Scholar  * Rocker, C., Potzl, M., Zhang, F., Parak, W.J. & Nienhaus, G.U. A quantitative fluorescence study of


protein monolayer formation on colloidal nanoparticles. _Nat. Nanotechnol._ 4, 577–580 (2009). Article  Google Scholar  * Lundqvist, M. et al. The evolution of the protein corona around


nanoparticles: a test study. _ACS Nano_ 5, 7503–7509 (2011). Article  CAS  Google Scholar  * Owens, D.E. III & Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of


polymeric nanoparticles. _Int. J. Pharm._ 307, 93–102 (2006). Article  CAS  Google Scholar  * Mahmoudi, M. et al. Irreversible changes in protein conformation due to interaction with


superparamagnetic iron oxide nanoparticles. _Nanoscale_ 3, 1127–1138 (2011). Article  CAS  Google Scholar  * Ehrenberg, M.S., Friedman, A.E., Finkelstein, J.N., Oberdorster, G. &


McGrath, J.L. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. _Biomaterials_ 30, 603–610 (2009). Article  CAS  Google Scholar  * Gessner, A.,


Lieske, A., Paulke, B. & Muller, R. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. _Eur. J. Pharm.


Biopharm._ 54, 165–170 (2002). Article  CAS  Google Scholar  * Dobrovolskaia, M.A. et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis


of plasma protein binding profiles. _Nanomedicine (Lond.)_ 5, 106–117 (2009). Article  CAS  Google Scholar  * Lundqvist, M. et al. Nanoparticle size and surface properties determine the


protein corona with possible implications for biological impacts. _Proc. Natl. Acad. Sci. USA_ 105, 14265–14270 (2008). Article  CAS  Google Scholar  * Chakraborty, S. et al. Contrasting


effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. _Langmuir_ 27, 7722–7731 (2011). Article  CAS  Google


Scholar  * Dutta, D. et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. _Toxicol. Sci._ 100, 303–315 (2007). Article  CAS  Google Scholar  *


Cedervall, T. et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. _Angew Chem. Int. Ed. Engl._ 46, 5754–5756 (2007). Article  CAS  Google Scholar  *


Lacerda, S.H. et al. Interaction of gold nanoparticles with common human blood proteins. _ACS Nano_ 4, 365–379 (2010). Article  Google Scholar  * Lindman, S. et al. Systematic investigation


of the thermodynamics of HSA adsorption to _N_-_iso_-propylacrylamide/_N_-_tert_-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. _Nano Lett._ 7, 914–920


(2007). Article  CAS  Google Scholar  * Mahmoudi, M. et al. Temperature: the 'ignored' factor at the NanoBio interface. _ACS Nano_ 7, 6555–6562 (2013). Article  CAS  Google


Scholar  * Mahmoudi, M., Laurent, S., Shokrgozar, M.A. & Hosseinkhani, M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell 'vision' versus


physicochemical properties of nanoparticles. _ACS Nano_ 5, 7263–7276 (2011). Article  CAS  Google Scholar  * Monopoli, M.P. et al. Physical-chemical aspects of protein corona: relevance to


_in vitro_ and _in vivo_ biological impacts of nanoparticles. _J. Am. Chem. Soc._ 133, 2525–2534 (2011). Article  CAS  Google Scholar  * Goppert, T.M. & Muller, R.H. Protein adsorption


patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). _Eur. J. Pharm. Biopharm._ 60, 361–372 (2005). Article  Google Scholar  * Labarre, D. et al. Interactions of


blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. _Biomaterials_ 26, 5075–5084 (2005). Article  CAS  Google Scholar  Download references


ACKNOWLEDGEMENTS Grant support for this study: Deutsche Forschungsgemeinschaft (DFG)-SPP1313, DFG-SFB490/Z3; Bundesministerium für Bildung und Forschung (BMBF)-MRCyte/NanoBEL/DENANA;


Zeiss-ChemBioMed; University Mainz Forschungszentrum Immunologie; Research Center for Immunology (FZI); and Stiftung Rheinland-Pfalz (NANOSCH, NanoScreen). AUTHOR INFORMATION Author notes *


Dominic Docter and Ute Distler: These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Molecular and Cellular Oncology, ENT, University Medical Center of Mainz, Mainz,


Germany Dominic Docter, Desirée Wünsch, Angelina Hahlbrock & Roland H Stauber * Institute for Immunology, University Medical Center of Mainz, Mainz, Germany Ute Distler, Wiebke Storck, 


Jörg Kuharev & Stefan Tenzer * Institute for Molecular Biology, University Duisburg-Essen, Essen, Germany Shirley K Knauer Authors * Dominic Docter View author publications You can also


search for this author inPubMed Google Scholar * Ute Distler View author publications You can also search for this author inPubMed Google Scholar * Wiebke Storck View author publications You


can also search for this author inPubMed Google Scholar * Jörg Kuharev View author publications You can also search for this author inPubMed Google Scholar * Desirée Wünsch View author


publications You can also search for this author inPubMed Google Scholar * Angelina Hahlbrock View author publications You can also search for this author inPubMed Google Scholar * Shirley K


Knauer View author publications You can also search for this author inPubMed Google Scholar * Stefan Tenzer View author publications You can also search for this author inPubMed Google


Scholar * Roland H Stauber View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS S.T., R.H.S., J.K., U.D. and D.D. developed the protocol; D.D.,


U.D., J.K., A.H., W.S., D.W., S.K.K., S.T. and R.H.S. conducted the experiments, interpreted the data and drafted the manuscript. CORRESPONDING AUTHORS Correspondence to Stefan Tenzer or


Roland H Stauber. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY TABLE 1 Settings for ISOQuant


post-processing for label-free quantification. (XLSX 11 kb) SUPPLEMENTARY TABLE 2 Integrated summary of corona proteins identified on silica and polystyrene nanoparticles8,12, containing


averaged (typical) abundance values (expressed in parts per million of total corona protein) for each nanoparticle type, including human plasma as a reference for future studies. The table


also contains information regarding functional annotation, molecular weight and isoelectric points for corona-associated proteins. (XLSX 63 kb) RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Docter, D., Distler, U., Storck, W. _et al._ Quantitative profiling of the protein coronas that form around nanoparticles. _Nat Protoc_ 9,


2030–2044 (2014). https://doi.org/10.1038/nprot.2014.139 Download citation * Published: 31 July 2014 * Issue Date: September 2014 * DOI: https://doi.org/10.1038/nprot.2014.139 SHARE THIS


ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard


Provided by the Springer Nature SharedIt content-sharing initiative