Quantifying force-dependent and zero-force dna intercalation by single-molecule stretching

Quantifying force-dependent and zero-force dna intercalation by single-molecule stretching


Play all audios:

Loading...

ABSTRACT We used single DNA molecule stretching to investigate DNA intercalation by ethidium and three ruthenium complexes. By measuring ligand-induced DNA elongation at different ligand


concentrations, we determined the binding constant and site size as a function of force. Both quantities depend strongly on force and, in the limit of zero force, converge to the known bulk


solution values, when available. This approach allowed us to distinguish the intercalative mode of ligand binding from other binding modes and allowed characterization of intercalation with


binding constants ranging over almost six orders of magnitude, including ligands that do not intercalate under experimentally accessible solution conditions. As ligand concentration


increased, the DNA stretching curves saturated at the maximum amount of ligand intercalation. The results showed that the applied force partially relieves normal intercalation constraints.


We also characterized the flexibility of intercalator-saturated dsDNA for the first time. Access through your institution Buy or subscribe This is a preview of subscription content, access


via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy


this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: *


Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DNA CALORIMETRIC FORCE SPECTROSCOPY AT SINGLE BASE PAIR


RESOLUTION Article Open access 19 March 2025 PREDICTING THE EFFECT OF BINDING MOLECULES ON THE SHAPE AND MECHANICAL PROPERTIES OF STRUCTURED DNA ASSEMBLIES Article Open access 31 July 2024


HIGH-THROUGHPUT SINGLE-MOLECULE QUANTIFICATION OF INDIVIDUAL BASE STACKING ENERGIES IN NUCLEIC ACIDS Article Open access 06 February 2023 REFERENCES * Lerman, L.S. Structural considerations


in the interaction of DNA and acridines. _J. Mol. Biol._ 3, 18–30 (1961). Article  CAS  Google Scholar  * Waring, M.J. DNA Modification and cancer. _Annu. Rev. Biochem._ 50, 159–192 (1981).


Article  CAS  Google Scholar  * Hurley, L.H. DNA and its associated processes as targets for cancer therapy. _Nat. Rev. Cancer_ 2, 188–200 (2002). Article  CAS  Google Scholar  * Mihailovic,


A. et al. Exploring the interaction of ruthenium(II) polypyridyl complexes with DNA using single-molecule techniques. _Langmuir_ 22, 4699–4709 (2006). Article  CAS  Google Scholar  *


Vladescu, I.D., McCauley, M.J., Rouzina, I. & Williams, M.C. Mapping the phase diagram of single DNA molecule force-induced melting in the presence of ethidium. _Phys. Rev. Lett._ 95,


158102 (2005). Article  Google Scholar  * Berman, H.M. & Young, P.R. The interaction of intercalating drugs with nucleic acids. _Annu. Rev. Biophys. Bioeng._ 10, 87–114 (1981). Article 


CAS  Google Scholar  * Haq, I. et al. Interaction of delta- and lambda-[Ru(phen)2DPPZ]2+ with DNA: a calorimetric and equilibrium binding study. _J. Am. Chem. Soc._ 117, 4788–4796 (1995).


Article  CAS  Google Scholar  * Dupureur, C.M. & Barton, J.K. Structural studies of lambda- and delta-[Ru(phen)2dppz]2+ bound to (GTCGAC)2: characterization of enantioselective


intercalation. _Inorg. Chem._ 36, 33–43 (1997). Article  CAS  Google Scholar  * Lincoln, P. & Nordén, B. DNA binding geometries of ruthenium(II) complexes with 1,10-phenanthroline and


2,2′-bipyridine ligands studied with linear dichroism spectroscopy. Borderline cases of intercalation. _J. Phys. Chem. B_ 102, 9583–9594 (1998). Article  CAS  Google Scholar  *


Satyanarayana, S., Dabrowaik, J.C. & Chaires, J.B. Neither delta- nor lambda-Tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. _Biochemistry_ 31, 9319–9324


(1992). Article  CAS  Google Scholar  * Pyle, A.M. et al. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. _J. Am. Chem. Soc._ 111, 3051–3058 (1989). Article  CAS 


Google Scholar  * Cluzel, P. et al. DNA: an extensible molecule. _Science_ 271, 792–794 (1996). Article  CAS  Google Scholar  * McCauley, M.J. & Williams, M.C. Mechanisms of DNA binding


determined in optical tweezers experiments. _Biopolymers_ 85, 154–168 (2007). Article  CAS  Google Scholar  * McGhee, J.D. & von Hippel, P.H. Theoretical aspects of DNA-protein


interactions: cooperative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice. _J. Mol. Biol._ 86, 469–489 (1974). Article  CAS  Google Scholar  *


Mahadevan, S. & Palaniandavar, M. Chiral discrimination in the binding of tris(phenanthroline)ruthenium(II) to calf thymus DNA: an electrochemical study. _Bioconjug. Chem._ 7, 138–143


(1996). Article  CAS  Google Scholar  * Baumann, C.G. et al. Stretching of single collapsed DNA molecules. _Biophys. J._ 78, 1965–1978 (2000). Article  CAS  Google Scholar  * Cruceanu, M. et


al. Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins. _Nucleic Acids Res._ 34, 593–605 (2006). Article  CAS  Google Scholar  * Record, M.T., Jr, Lohman,


T.M. & de Haseth, P.L. Ion effects on ligand-nucleic acid interactions. _J. Mol. Biol._ 107, 145–158 (1976). Article  CAS  Google Scholar  * Makhatadze, G.I. & Privalov, P.L.


Energetics of protein structure. _Adv. Prot. Chem._ 47, 307–425 (1995). CAS  Google Scholar  * Phillips, T., Rajput, C., Twyman, L., Haq, I. & Thomas, J.A. Water-soluble organic dppz


analogues–tuning DNA binding affinities, luminescence, and photo-redox properties. _Chem. Commun. (Camb.)_ 4327–4329 (2005). * Smith, S.B., Cui, Y.J. & Bustamante, C. Overstretching


B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. _Science_ 271, 795–799 (1996). Article  CAS  Google Scholar  * McCauley, M., Hardwidge, P.R.,


Maher, L.J., III & Williams, M.C. Dual binding modes for an HMG domain from human HMGB2 on DNA. _Biophys. J._ 89, 353–364 (2005). Article  CAS  Google Scholar  * Phillips, T. et al. DNA


binding of an organic dppz-based intercalator. _Biochemistry_ 43, 13657–13665 (2004). Article  CAS  Google Scholar  * Chaires, J.B. Drug–DNA interactions. _Curr. Opin. Struct. Biol._ 8,


314–320 (1998). Article  CAS  Google Scholar  * Shokri, L., Marintcheva, B., Richardson, C.C., Rouzina, I. & Williams, M.C. Single-molecule force spectroscopy of salt-dependent


bacteriophage T7 gene 2.5 protein binding to single-stranded DNA. _J. Biol. Chem._ 281, 38689–38696 (2006). Article  CAS  Google Scholar  * Westerlund, F., Eng, M.P., Winters, M.U. &


Lincoln, P. Binding geometry and photophysical properties of DNA-threading binuclear ruthenium complexes. _J. Phys. Chem. B_ 111, 310–317 (2007). Article  CAS  Google Scholar  * Nordmeier,


E. Absorption spectroscopy and dynamic and static light-scattering studies of ethidium bromide binding to calf thymus DNA: implications for outside binding and intercalation. _J. Phys.


Chem._ 96, 6045–6055 (1992). Article  CAS  Google Scholar  * Jain, S.C. & Sobell, H.M. Visualization of drug-nucleic acid interactions at atomic resolution. VII. Structure of an


ethidium/dinucleoside monophosphate crystalline complex, ethidium: uridylyl(3′-5′) adenosine. _J. Biomol. Struct. Dyn._ 1, 1161–1177 (1984). Article  CAS  Google Scholar  * Vardevanyan,


P.O., Antonyan, A.P., Parsadanyan, M.A., Davtyan, H.G. & Karapetyan, A.T. The binding of ethidium bromide with DNA: interaction with single- and double-stranded structures. _Exp. Mol.


Med._ 35, 527–533 (2003). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We acknowledge funding from the US National Science Foundation (MCB0238190), US National


Institutes of Health (GM072462) and American Chemical Society Petroleum Research Fund. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Physics, Northeastern University, Boston,


02115, Massachusetts, USA Ioana D Vladescu, Micah J McCauley & Mark C Williams * Department of Chemistry, Mount Holyoke College, South Hadley, 01075, Massachusetts, USA Megan E Nuñez *


Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, Minnesota, USA Ioulia Rouzina * Center for Interdisciplinary Research on Complex


Systems, Northeastern University, Boston, 02115, Massachusetts, USA Mark C Williams Authors * Ioana D Vladescu View author publications You can also search for this author inPubMed Google


Scholar * Micah J McCauley View author publications You can also search for this author inPubMed Google Scholar * Megan E Nuñez View author publications You can also search for this author


inPubMed Google Scholar * Ioulia Rouzina View author publications You can also search for this author inPubMed Google Scholar * Mark C Williams View author publications You can also search


for this author inPubMed Google Scholar CONTRIBUTIONS I.D.V. performed most experiments. M.J.M. maintained the instrument, labeled DNA and performed some experiments. M.E.N. provided


ruthenium compounds. I.D.V., I.R., M.E.N. and M.C.W. designed the research. I.R. developed the theory. I.D.V., M.E.N., I.R. and M.C.W. wrote the paper. CORRESPONDING AUTHORS Correspondence


to Ioulia Rouzina or Mark C Williams. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIG. 1 Drug effect


on hysteresis behavior. (PDF 92 kb) SUPPLEMENTARY FIG. 2 Dependence of Ru(phen)2dppz2+ binding on force. (PDF 81 kb) SUPPLEMENTARY FIG. 3 Dependence of Ru(phen)32+ binding on force. (PDF 77


kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Vladescu, I., McCauley, M., Nuñez, M. _et al._ Quantifying force-dependent and zero-force DNA


intercalation by single-molecule stretching. _Nat Methods_ 4, 517–522 (2007). https://doi.org/10.1038/nmeth1044 Download citation * Received: 29 January 2007 * Accepted: 21 March 2007 *


Published: 29 April 2007 * Issue Date: June 2007 * DOI: https://doi.org/10.1038/nmeth1044 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get


shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative