Phase coexistence and electric-field control of toroidal order in oxide superlattices

Phase coexistence and electric-field control of toroidal order in oxide superlattices


Play all audios:

Loading...

ABSTRACT Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by


applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-,


temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase


transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric _a_1/_a_2 phase. At room temperature, the coexisting vortex and


ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding


ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this


mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our


findings suggest new cross-coupled functionalities. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn more


Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS NON-EQUILIBRIUM PATHWAYS TO EMERGENT POLAR SUPERTEXTURES Article 24 September 2024 LOCAL NEGATIVE PERMITTIVITY AND TOPOLOGICAL


PHASE TRANSITION IN POLAR SKYRMIONS Article 12 October 2020 TOPOLOGY AND CONTROL OF SELF-ASSEMBLED DOMAIN PATTERNS IN LOW-DIMENSIONAL FERROELECTRICS Article Open access 13 November 2020


REFERENCES * Dagotto, E. Correlated electrons in high-temperature superconductors. _Rev. Mod. Phys._ 66, 763–840 (1994). Article  CAS  Google Scholar  * Tokura, Y. & Tomioka, Y. Colossal


magnetoresistive manganites. _J. Magn. Magn. Mater._ 200, 1–23 (1999). Article  CAS  Google Scholar  * Dagotto, E. _Nanoscale Phase Separation and Colossal Magnetoresistance_ (Springer,


2003). Book  Google Scholar  * Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. _Rev. Mod. Phys._ 77, 1083–1130 (2005). Article  CAS  Google Scholar  *


Manfred, F. Revival of the magnetoelectric effect. _J. Phys. D_ 38, R123 (2005). Article  Google Scholar  * Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin


films. _Nat. Mater._ 6, 21–29 (2007). Article  CAS  Google Scholar  * Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. _Nat. Mater._ 6, 13–20 (2007).


Article  CAS  Google Scholar  * Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. _Science_ 288, 462–468 (2000). Article  CAS  Google Scholar  * Imada, M., Fujimori,


A. & Tokura, Y. Metal–insulator transitions. _Rev. Mod. Phys._ 70, 1039–1263 (1998). Article  CAS  Google Scholar  * Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J.-M.


Interface physics in complex oxide heterostructures. _Annu. Rev. Condens. Matter Phys._ 2, 141–165 (2011). Article  CAS  Google Scholar  * Jin, S. et al. Thousandfold change in resistivity


in magnetoresistive La–Ca–Mn–O films. _Science_ 264, 413–415 (1994). Article  CAS  Google Scholar  * Uehara, M., Mori, S., Chen, C. H. & Cheong, S. W. Percolative phase separation


underlies colossal magnetoresistance in mixed-valent manganites. _Nature_ 399, 560–563 (1999). Article  CAS  Google Scholar  * Noheda, B. & Cox, D. E. Bridging phases at the morphotropic


boundaries of lead oxide solid solutions. _Phase Transit._ 79, 5–20 (2006). Article  CAS  Google Scholar  * Jaffe, B., Cook, W. R. & Jaffe, H. _Piezoelectric Ceramics_ (Academic, 1971).


Google Scholar  * Choi, S. W., Shrout, R. T. R., Jang, S. J. & Bhalla, A. S. Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. _Ferroelectrics_ 100, 29–38


(1989). Article  CAS  Google Scholar  * Saito, Y. et al. Lead-free piezoceramics. _Nature_ 432, 84–87 (2004). Article  CAS  Google Scholar  * Roszler, U. K., Bogdanov, A. N. &


Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. _Nature_ 442, 797–801 (2006). Article  Google Scholar  * Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet.


_Science_ 323, 915–919 (2009). Article  Google Scholar  * Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. _Nature_ 465, 901–904 (2010). Article  CAS  Google


Scholar  * Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. _Nature_ 432, 737–740 (2004). Article  CAS  Google Scholar  *


Prosandeev, S., Ponomareva, I., Naumov, I., Kornev, I. & Bellaiche, L. Original properties of dipole vortices in zero-dimensional ferroelectrics. _J. Phys. Condens. Matter_ 20, 193201


(2008). Article  Google Scholar  * Prosandeev, S. et al. Natural optical activity and its control by electric field in electrotoroidic systems. _Phys. Rev. B_ 87, 195111 (2013). Article 


Google Scholar  * Chen, W. J., Zheng, Y., Wang, B. & Liu, J. Y. Coexistence of toroidal and polar domains in ferroelectric systems: a strategy for switching ferroelectric vortex. _J. 


Appl. Phys._ 115, 214106 (2014). Article  Google Scholar  * Chen, W. J., Zheng, Y. & Wang, B. Large and tunable polar-toroidal coupling in ferroelectric composite nanowires toward


superior electromechanical responses. _Sci. Rep._ 5, 11165 (2015). Article  CAS  Google Scholar  * Hans, S. Some symmetry aspects of ferroics and single phase multiferroics. _J. Phys.


Condens. Matter_ 20, 434201 (2008). Article  Google Scholar  * Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. _Nature_ 530, 198–201 (2016). Article  CAS  Google


Scholar  * Pertsev, N. A. & Zembilgotov, A. G. Energetics and geometry of 90° domain structures in epitaxial ferroelectric and ferroelastic films. _J. Appl. Phys._ 78, 6170–6180 (1995).


Article  CAS  Google Scholar  * Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. _Rev. Mod. Phys._ 84, 119–156 (2012). Article  CAS  Google Scholar  *


Hong, Z. et al. Stability of polar vortex lattice in ferroelectric superlattices. _Nano Lett._ 17, 2246–2252 (2017). Article  CAS  Google Scholar  * Prosandeev, S., Ponomareva, I., Kornev,


I., Naumov, I. & Bellaiche, L. Controlling toroidal moment by means of an inhomogeneous static field: an _ab initio_ study. _Phys. Rev. Lett._ 96, 237601 (2006). Article  CAS  Google


Scholar  * Naumov, I. & Fu, H. Vortex-to-polarization phase transformation path in ferroelectric Pb(ZrTi)O3 nanoparticles. _Phys. Rev. Lett._ 98, 077603 (2007). Article  Google Scholar 


* Naumov, I. & Bratkovsky, A. M. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. _Phys. Rev. Lett._ 101, 107601 (2008). Article  Google Scholar  * Nahas, Y.


et al. Discovery of stable skyrmionic state in ferroelectric nanocomposites. _Nat. Commun._ 6, 8542 (2015). Article  CAS  Google Scholar  * Chen, L. Q. Phase-field method of phase


transitions/domain structures in ferroelectric thin films: a review. _J. Am. Ceram. Soc._ 91, 1835–1844 (2008). Article  CAS  Google Scholar  * Xue, F. et al. Phase field simulations of


ferroelectrics domain structures in PbZr_x_Ti1−_x_O3 bilayers. _Acta Mater._ 61, 2909–2918 (2013). Article  CAS  Google Scholar  * Wang, J. J., Ma, X. Q., Li, Q., Britson, J. & Chen, L.


Q. Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity. _Acta Mater._ 61, 7591–7603 (2013).


Article  CAS  Google Scholar  * Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin


films. _Acta. Mater._ 50, 395–411 (2002). Article  CAS  Google Scholar  * Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of electrical boundary conditions on ferroelectric domain


structures in thin films. _Appl. Phys. Lett._ 81, 427–429 (2002). Article  CAS  Google Scholar  * Chen, L. Q. & Shen, J. Applications of semi-implicit Fourier spectral method to phase


field equations. _Comput. Phys. Commun._ 108, 147–158 (1998). Article  CAS  Google Scholar  * Haun, M. J., Furman, E., Jiang, S. J., Mckinstry, H. A. & Cross, L. E. Thermodynamic theory


of PbTiO3 . _J. Appl. Phys._ 62, 3331–3338 (1987). Article  CAS  Google Scholar  * Sheng, G. et al. A modified Landau–Devonshire thermodynamic potential for strontium titanate. _Appl. Phys.


Lett._ 96, 232902 (2010). Article  Google Scholar  * Chen, Z. H., Damodaran, A. R., Xu, R., Lee, S. & Martin, L. W. Effect of ‘symmetry mismatch’ on the domain structure of rhombohedral


BiFeO3 thin films. _Appl. Phys. Lett._ 104, 182908 (2014). Article  Google Scholar  * Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. _Nature_ 534, 524–528


(2016). Article  CAS  Google Scholar  * Wojde, J. C., Hermet, P., Ljungberg, M. P., Ghosez, P. & Iniguez, J. First-principles model potentials for lattice-dynamical studies: general


methodology and example of application to ferroic perovskite oxides. _J. Phys. Condens. Matter_ 25, 305401 (2013). Article  Google Scholar  * Ophus, C., Nelson, C. T. & Ciston, J.


Correcting nonlinear drift distortion of scanning probe microscopy from image pairs with orthogonal scan directions. _Ultramicroscopy_ 162, 1–9 (2016). Article  CAS  Google Scholar  *


Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. _Nano Lett._ 11, 828–834 (2011). Article  CAS  Google Scholar  * Glazer, A. M. & Mabud, S. A.


Powder profile refinement of lead zirconium titanate at several temperatures. II. PbTiO3 . _Acta Crystallogr. B_ 34, 1065–1070 (1978). Article  Google Scholar  * Neacsu, C. C., van Aken, B.


B., Fiebig, M. & Raschke, M. B. Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3 . _Phys. Rev. B_ 79, 100107 (2009). Article  Google Scholar  * Park, K. D.


et al. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. _Nano Lett._ 16, 2621–2627 (2016). Article  CAS  Google Scholar  Download references


ACKNOWLEDGEMENTS A.R.D. acknowledges support from the Army Research Office under grant W911NF-14-1-0104 and the Department of Energy, Office of Science, Office of Basic Energy Sciences under


grant no. DE-SC0012375 for synthesis and structural study of the materials. Z.H. acknowledges support from NSF-MRSEC grant number DMR-1420620 and NSF-MWN grant number DMR-1210588. A.K.Y.


acknowledges support from the Office of Basic Energy Sciences, US Department of Energy DE-AC02-05CH11231. C.T.N. acknowledge support from the Office of Basic Energy Sciences, US Department


of Energy DE-AC02-05CH11231. S.L.H. acknowledges support from the National Science Foundation under the MRSEC programme (DMR-1420620). M.R.M. acknowledges support from the National Science


Foundation Graduate Research Fellowship under grant number DGE-1106400. K.-D.P., V.K. and M.B.R. acknowledge support from the US Department of Energy, Office of Basic Sciences, Division of


Material Sciences and Engineering, under Award No. DE-SC0008807. A.F. acknowledges support from the Swiss National Science Foundation. P.G.-F. and J.J. acknowledge financial support from the


Spanish Ministry of Economy and Competitiveness through grant number FIS2015-64886-C5-2-P.J.Í. is supported by the Luxembourg National Research Fund (Grant FNR/C15/MS/10458889 NEWALLS).


L.-Q.C. is supported by the US Department of Energy, Office of Basic Energy Sciences under Award FG02-07ER46417. R.R. and L.W.M. acknowledge support from the Gordon and Betty Moore


Foundation’s EPiQS Initiative, under grant GBMF5307. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of


Energy under Contract No. DE-AC02-05CH11231. Nanodiffraction measurements were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials


Sciences and Engineering Division. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of


Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Electron microscopy of superlattice structures was performed at the Molecular Foundry at Lawrence Berkeley


National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, US Department of Energy (DE-AC02-05CH11231). AUTHOR INFORMATION Author notes * A. R. Damodaran and


J. D. Clarkson: These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Department of Materials Science and Engineering, University of California, Berkeley, California,


94720, USA A. R. Damodaran, J. D. Clarkson, A. K. Yadav, C. T. Nelson, S.-L. Hsu, R. Ramesh & L. W. Martin * Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,


California, 94720, USA A. R. Damodaran, J. D. Clarkson, A. K. Yadav, R. Ramesh & L. W. Martin * Department of Materials Science and Engineering, Pennsylvania State University, State


College, Pennsylvania, 16802, USA Z. Hong & L.-Q. Chen * Materials Science Division, Argonne National Laboratory, Argonne, Illinois, 60439, USA H. Liu, Y. Dong & D. D. Fong * School


of Electrical Engineering and Computer Science, UC Berkeley, Berkeley, California, 94720, USA A. K. Yadav * National Center for Electron Microscopy, Lawrence Berkeley National Laboratory,


Berkeley, California, 94720, USA C. T. Nelson & S.-L. Hsu * Department of Physics, University of California, Berkeley, Berkeley, California, 94720, USA M. R. McCarter & R. Ramesh *


Department of Physics, Department of Chemistry, and JILA, University of Colorado, Boulder, Boulder, Colorado, 80309, USA K.-D. Park, V. Kravtsov & M. B. Raschke * Advanced Light Source,


Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA A. Farhan & A. Scholl * X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, 60439, USA Z. Cai 


& H. Zhou * Centro de Física de Materiales, Universidad del País Vasco, 20018 San Sebastián, Spain P. Aguado-Puente * Donostia International Physics Center, 20018 San Sebastián, Spain P.


Aguado-Puente * Departmento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, avenida de los Castros s/n, 39005


Santander, Spain P. García-Fernández & J. Junquera * Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux,


L-4362 Esch/Alzette, Luxembourg J. Íñiguez Authors * A. R. Damodaran View author publications You can also search for this author inPubMed Google Scholar * J. D. Clarkson View author


publications You can also search for this author inPubMed Google Scholar * Z. Hong View author publications You can also search for this author inPubMed Google Scholar * H. Liu View author


publications You can also search for this author inPubMed Google Scholar * A. K. Yadav View author publications You can also search for this author inPubMed Google Scholar * C. T. Nelson


View author publications You can also search for this author inPubMed Google Scholar * S.-L. Hsu View author publications You can also search for this author inPubMed Google Scholar * M. R.


McCarter View author publications You can also search for this author inPubMed Google Scholar * K.-D. Park View author publications You can also search for this author inPubMed Google


Scholar * V. Kravtsov View author publications You can also search for this author inPubMed Google Scholar * A. Farhan View author publications You can also search for this author inPubMed 


Google Scholar * Y. Dong View author publications You can also search for this author inPubMed Google Scholar * Z. Cai View author publications You can also search for this author inPubMed 


Google Scholar * H. Zhou View author publications You can also search for this author inPubMed Google Scholar * P. Aguado-Puente View author publications You can also search for this author


inPubMed Google Scholar * P. García-Fernández View author publications You can also search for this author inPubMed Google Scholar * J. Íñiguez View author publications You can also search


for this author inPubMed Google Scholar * J. Junquera View author publications You can also search for this author inPubMed Google Scholar * A. Scholl View author publications You can also


search for this author inPubMed Google Scholar * M. B. Raschke View author publications You can also search for this author inPubMed Google Scholar * L.-Q. Chen View author publications You


can also search for this author inPubMed Google Scholar * D. D. Fong View author publications You can also search for this author inPubMed Google Scholar * R. Ramesh View author publications


You can also search for this author inPubMed Google Scholar * L. W. Martin View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS A.R.D., J.D.C.,


R.R. and L.W.M. conceived of the central concepts and designed the experiments. A.R.D., H.L. and M.R.M. conducted the synchrotron and laboratory X-ray diffraction studies. J.D.C. and A.R.D.


conducted the scanning probe-based PFM measurements. Z.H. performed and analysed the phase-field simulations. A.K.Y. and M.R.M. synthesized the materials. C.T.N. and S.L.H. performed the


TEM-based characterization of the superlattice samples, along with the detailed polarization vector analysis. K.-D.P. and V.K. performed the near- and far-field SHG measurements. A.F.


conducted the PEEM measurements. Y.D., Z.C., H.Z. and H.L. conducted the synchrotron nanodiffraction studies. P.A.-P. and J.J. completed the second-principles simulations that were analysed


by P.A.-P., P.G.-F., J.Í. and J.J. A.S., M.B.R., L.-Q.C. and D.D.F. contributed to analysis, discussions, and understanding of the data and the development of the manuscript. A.R.D., R.R.


and L.W.M. wrote the manuscript. All authors discussed the results and implications of the work and read, edited and commented on the manuscript at all stages. CORRESPONDING AUTHOR


Correspondence to L. W. Martin. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION


Supplementary Information (PDF 1647 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Damodaran, A., Clarkson, J., Hong, Z. _et al._ Phase coexistence


and electric-field control of toroidal order in oxide superlattices. _Nature Mater_ 16, 1003–1009 (2017). https://doi.org/10.1038/nmat4951 Download citation * Received: 17 December 2016 *


Accepted: 28 June 2017 * Published: 07 August 2017 * Issue Date: 01 October 2017 * DOI: https://doi.org/10.1038/nmat4951 SHARE THIS ARTICLE Anyone you share the following link with will be


able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing


initiative