Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor slpi

Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor slpi


Play all audios:

Loading...

ABSTRACT Epithelial cells (ECs) transport class-switched immunoglobulin G (IgG) and IgA antibodies across mucous membranes. Whether ECs initiate class switching remains unknown. Here we


found that ECs lining tonsillar crypts formed pockets populated by B cells expressing activation-induced cytidine deaminase (AID), an enzyme associated with ongoing class switching. ECs


released B cell–activating AID-inducing factors after sensing microbial products through Toll-like receptors. The resulting class switching was amplified by thymic stromal lymphopoietin, an


epithelial interleukin 7–like cytokine that enhanced the B cell 'licensing' function of dendritic cells, and was restrained by secretory leukocyte protease inhibitor, an epithelial


homeostatic protein that inhibited AID induction in B cells. Thus, ECs may function as mucosal 'guardians' orchestrating frontline IgG and IgA class switching through a Toll-like


receptor–inducible signaling program regulated by secretory leukocyte protease inhibitor. NOTE: In the version of this article initially published online, the middle label above Figure 6c is


incorrect. The correct label should be ‘BAFF’. The error has been corrected for all versions of the article. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only


$17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS AN INTEGRIN ΑEΒ7-DEPENDENT


MECHANISM OF IGA TRANSCYTOSIS REQUIRES DIRECT PLASMA CELL CONTACT WITH INTESTINAL EPITHELIUM Article Open access 20 August 2021 EPITHELIAL IFNΓ SIGNALLING AND COMPARTMENTALIZED ANTIGEN


PRESENTATION ORCHESTRATE GUT IMMUNITY Article 22 November 2023 IL-22 INITIATES AN IL-18-DEPENDENT EPITHELIAL RESPONSE CIRCUIT TO ENFORCE INTESTINAL HOST DEFENCE Article Open access 15


February 2022 CHANGE HISTORY * _ 08 FEBRUARY 2007 In the version of this article initially published online, the middle label above Figure 6c is incorrect. The correct label should be


‘BAFF’. The error has been corrected for all versions of the article. _ REFERENCES * Nagler-Anderson, C. Man the barrier! Strategic defences in the intestinal mucosa. _Nat. Rev. Immunol._ 1,


59–67 (2001). Article  CAS  Google Scholar  * Neutra, M.R., Mantis, N.J. & Kraehenbuhl, J.P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. _Nat. Immunol._


2, 1004–1009 (2001). Article  CAS  Google Scholar  * Hornef, M.W., Wick, M.J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. _Nat.


Immunol._ 3, 1033–1040 (2002). Article  CAS  Google Scholar  * Kiyono, H. & Fukuyama, S. NALT- versus Peyer's-patch-mediated mucosal immunity. _Nat. Rev. Immunol._ 4, 699–710


(2004). Article  CAS  Google Scholar  * Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. _Annu. Rev. Immunol._ 21, 335–376 (2003). Article  CAS  Google Scholar  * Abreu, M.T.,


Fukata, M. & Arditi, M. TLR signaling in the gut in health and disease. _J. Immunol._ 174, 4453–4460 (2005). Article  CAS  Google Scholar  * Rakoff-Nahoum, S., Paglino, J.,


Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. _Cell_ 118, 229–241 (2004). Article 


CAS  Google Scholar  * Ganz, T. & Lehrer, R.I. Antimicrobial peptides of vertebrates. _Curr. Opin. Immunol._ 10, 41–44 (1998). Article  CAS  Google Scholar  * Hooper, L.V., Stappenbeck,


T.S., Hong, C.V. & Gordon, J.I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. _Nat. Immunol._ 4, 269–273 (2003). Article  CAS  Google Scholar  *


Hiemstra, P.S., Fernie-King, B.A., McMichael, J., Lachmann, P.J. & Sallenave, J.M. Antimicrobial peptides: mediators of innate immunity as templates for the development of novel


anti-infective and immune therapeutics. _Curr. Pharm. Des._ 10, 2891–2905 (2004). Article  CAS  Google Scholar  * Yang, D. et al. Beta-defensins: linking innate and adaptive immunity through


dendritic and T cell CCR6. _Science_ 286, 525–528 (1999). Article  CAS  Google Scholar  * Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2.


_Science_ 298, 1025–1029 (2002). Article  CAS  Google Scholar  * Kelsall, B.L. & Rescigno, M. Mucosal dendritic cells in immunity and inflammation. _Nat. Immunol._ 5, 1091–1095 (2004).


Article  CAS  Google Scholar  * Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. _Nat. Immunol._ 2, 361–367


(2001). Article  CAS  Google Scholar  * Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. _Nat. Immunol._ 6,


507–514 (2005). Article  CAS  Google Scholar  * Fagarasan, S. & Honjo, T. Intestinal IgA synthesis: regulation of front-line body defences. _Nat. Rev. Immunol._ 3, 63–72 (2003). Article


  CAS  Google Scholar  * Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. _Nat. Immunol._ 3, 673–680 (2002). Article  CAS 


Google Scholar  * Watanabe, N. et al. Human thymic stromal lymphopoietin promotes dendritic cell–mediated CD4+ T cell homeostatic expansion. _Nat. Immunol._ 5, 426–434 (2004). Article  CAS 


Google Scholar  * Brandtzaeg, P. et al. The B-cell system of human mucosae and exocrine glands. _Immunol. Rev._ 171, 45–87 (1999). Article  CAS  Google Scholar  * Brandtzaeg, P., Baekkevold,


E.S. & Morton, H.C. From B to A the mucosal way. _Nat. Immunol._ 2, 1093–1094 (2001). Article  CAS  Google Scholar  * Stavnezer, J. Antibody class switching. _Adv. Immunol._ 61, 79–146


(1996). Article  CAS  Google Scholar  * Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. _Annu. Rev.


Immunol._ 20, 165–196 (2002). Article  CAS  Google Scholar  * Calame, K.L. Plasma cells: finding new light at the end of B cell development. _Nat. Immunol._ 2, 1103–1108 (2001). Article  CAS


  Google Scholar  * Kunkel, E.J. et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. _J. Clin. Invest._ 111, 1001–1010 (2003).


Article  CAS  Google Scholar  * Wilson, E. & Butcher, E.C. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the


neonate. _J. Exp. Med._ 200, 805–809 (2004). Article  CAS  Google Scholar  * Suzuki, K., Meek, B., Doi, Y., Honjo, T. & Fagarasan, S. Two distinctive pathways for recruitment of naive


and primed IgM+ B cells to the gut lamina propria. _Proc. Natl. Acad. Sci. USA_ 102, 2482–2486 (2005). Article  CAS  Google Scholar  * Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K.


& Honjo, T. _In situ_ class switching and differentiation to IgA-producing cells in the gut lamina propria. _Nature_ 413, 639–643 (2001). Article  CAS  Google Scholar  * Macpherson, A.J.


et al. IgA production without μ or δ chain expression in developing B cells. _Nat. Immunol._ 2, 625–631 (2001). Article  CAS  Google Scholar  * Litinskiy, M.B. et al. DCs induce


CD40-independent immunoglobulin class switching through BLyS and APRIL. _Nat. Immunol._ 3, 822–829 (2002). Article  CAS  Google Scholar  * Macpherson, A.J. & Lamarre, A. BLySsful


interactions between DCs and B cells. _Nat. Immunol._ 3, 798–800 (2002). Article  CAS  Google Scholar  * Macpherson, A.J. & Uhr, T. Induction of protective IgA by intestinal dendritic


cells carrying commensal bacteria. _Science_ 303, 1662–1665 (2004). Article  CAS  Google Scholar  * Fagarasan, S. & Honjo, T. T-Independent immune response: new aspects of B cell


biology. _Science_ 290, 89–92 (2000). Article  CAS  Google Scholar  * Woof, J.M. & Mestecky, J. Mucosal immunoglobulins. _Immunol. Rev._ 206, 64–82 (2005). Article  CAS  Google Scholar 


* Brandtzaeg, P. & Prydz, H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. _Nature_ 311, 71–73 (1984). Article


  CAS  Google Scholar  * Mostov, K.E. & Simister, N.E. Transcytosis. _Cell_ 43, 389–390 (1985). Article  CAS  Google Scholar  * Mostov, K.E. & Deitcher, D.L. Polymeric immunoglobulin


receptor expressed in MDCK cells transcytoses IgA. _Cell_ 46, 613–621 (1986). Article  CAS  Google Scholar  * Johansen, F.E. et al. Absence of epithelial immunoglobulin A transport, with


increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. _J. Exp. Med._ 190, 915–922 (1999). Article  CAS  Google Scholar  * Spiekermann, G.M. et


al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. _J. Exp. Med._ 196, 303–310 (2002). Article  CAS


  Google Scholar  * Yoshida, M. et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. _Immunity_ 20,


769–783 (2004). Article  CAS  Google Scholar  * Kinoshita, K., Harigai, M., Fagarasan, S., Muramatsu, M. & Honjo, T. A hallmark of active class switch recombination: transcripts directed


by I promoters on looped-out circular DNAs. _Proc. Natl. Acad. Sci. USA_ 98, 12620–12623 (2001). Article  CAS  Google Scholar  * Graeme-Cook, F., Bhan, A.K. & Harris, N.L.


Immunohistochemical characterization of intraepithelial and subepithelial mononuclear cells of the upper airways. _Am. J. Pathol._ 143, 1416–1422 (1993). CAS  PubMed  PubMed Central  Google


Scholar  * Banchereau, J. & Steinman, R. Dendritic cells and the control of immunity. _Nature_ 392, 245–252 (1998). Article  CAS  Google Scholar  * Liu, Y.J. IPC: professional type 1


interferon-producing cells and plasmacytoid dendritic cell precursors. _Annu. Rev. Immunol._ 23, 275–306 (2005). Article  CAS  Google Scholar  * Cerutti, A., Qiao, X. & He, B.


Plasmacytoid dendritic cells and the regulation of immunoglobulin heavy chain class switching. _Immunol. Cell Biol._ 83, 554–562 (2005). Article  CAS  Google Scholar  * Ziegler, S.F. &


Liu, Y.J. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. _Nat. Immunol._ 7, 709–714 (2006). Article  CAS  Google Scholar  * Jin, F.Y., Nathan, C.,


Radzioch, D. & Ding, A. Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. _Cell_ 88, 417–426 (1997). Article  CAS


  Google Scholar  * Zhu, J. et al. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. _Cell_ 111, 867–878 (2002). Article  CAS  Google


Scholar  * Taggart, C.C. et al. Secretory leucoprotease inhibitor binds to NF-κB binding sites in monocytes and inhibits p65 binding. _J. Exp. Med._ 202, 1659–1668 (2005). Article  CAS 


Google Scholar  * Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. _Nature_ 414, 660–665 (2001). Article  CAS  Google


Scholar  * He, B., Qiao, X. & Cerutti, A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with


IL-10. _J. Immunol._ 173, 4479–4491 (2004). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank C. Nathan (Weill Medical College of Cornell University) and M.


Rescigno (European Institute of Oncology) for reagents and discussions. Supported by the National Institutes of Health (AI057653 to A.C.; and T32 AI07621, supporting W.X.). AUTHOR


INFORMATION AUTHORS AND AFFILIATIONS * Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, 10021, New York, USA Weifeng Xu, Bing He, April


Chiu, Amy Chadburn, Malwina Buldys, Daniel M Knowles, Paul A Santini & Andrea Cerutti * Department of Immunology and Microbiology, Weill Medical College of Cornell University, New York,


10021, New York, USA Meimei Shan & Aihao Ding * Graduate Program of Immunology and Microbial Pathogenesis, Weill Medical College of Cornell University, New York, 10021, New York, USA


Aihao Ding & Andrea Cerutti Authors * Weifeng Xu View author publications You can also search for this author inPubMed Google Scholar * Bing He View author publications You can also


search for this author inPubMed Google Scholar * April Chiu View author publications You can also search for this author inPubMed Google Scholar * Amy Chadburn View author publications You


can also search for this author inPubMed Google Scholar * Meimei Shan View author publications You can also search for this author inPubMed Google Scholar * Malwina Buldys View author


publications You can also search for this author inPubMed Google Scholar * Aihao Ding View author publications You can also search for this author inPubMed Google Scholar * Daniel M Knowles


View author publications You can also search for this author inPubMed Google Scholar * Paul A Santini View author publications You can also search for this author inPubMed Google Scholar *


Andrea Cerutti View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS W.X. designed and did research and analyzed data; B.H., M.S. and M.D. did


research; A. Chiu provided tissue samples and discussed data; A. Chadburn and D.M.K. provided tissue samples; A.D. provided reagents, discussed data and edited the paper; P.A.S. analyzed and


discussed data; and A. Cerutti designed research, analyzed data and wrote the paper. CORRESPONDING AUTHOR Correspondence to Andrea Cerutti. ETHICS DECLARATIONS COMPETING INTERESTS The


authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIG. 1 Primary oral ECs lack contaminating DCs and express BAFF. (PDF 185 kb) SUPPLEMENTARY FIG. 2


Intestinal and epidermal ECs express BAFF and TLR3. (PDF 195 kb) SUPPLEMENTARY FIG. 3 Intestinal and epidermal ECs express TLR9. (PDF 153 kb) SUPPLEMENTARY FIG. 4 B cells up-regulate TLR3


expression upon exposure to viral RNA and BAFF. (PDF 194 kb) SUPPLEMENTARY FIG. 5 ECs stimulate IgD+ B cells to undergo IgG and IgA CSR. (PDF 120 kb) SUPPLEMENTARY FIG. 6 ECs stimulate IgD+


B cells to produce broadly reactive IgG and IgM antibodies. (PDF 135 kb) SUPPLEMENTARY FIG. 7 Phenotype of myeloid DCs. (PDF 126 kb) SUPPLEMENTARY FIG. 8 Tonsillar ECs and intraepithelial B


cells contain SLPI. (PDF 136 kb) SUPPLEMENTARY FIG. 9 SLPI inhibits IgG and IgA production in IgD+ B cells exposed to CD40L, IL-4 and IL-10. (PDF 65 kb) SUPPLEMENTARY FIG. 10 ECs induce


frontline IgG and IgA class switching through a TLR-inducible SLPI-regulated epithelial pathway. (PDF 108 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS


ARTICLE Xu, W., He, B., Chiu, A. _et al._ Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. _Nat Immunol_ 8, 294–303


(2007). https://doi.org/10.1038/ni1434 Download citation * Received: 12 September 2006 * Accepted: 21 December 2006 * Published: 28 January 2007 * Issue Date: March 2007 * DOI:


https://doi.org/10.1038/ni1434 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently


available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative