Decrease in oceanic crustal thickness since the breakup of pangaea

Decrease in oceanic crustal thickness since the breakup of pangaea


Play all audios:

Loading...

ABSTRACT Earth’s mantle has cooled by 6–11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop


may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here


we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the


mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of


thicker Jurassic ocean crust, the upper mantle may have cooled by 15–20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate


indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and


Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent


Pangaea due to the effect of continental insulation. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS


Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on


SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about


institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS HIGHLY VARIABLE MAGMATIC ACCRETION AT THE ULTRASLOW-SPREADING GAKKEL RIDGE


Article Open access 21 August 2024 IGNITION OF THE SOUTHERN ATLANTIC SEAFLOOR SPREADING MACHINE WITHOUT HOT-MANTLE BOOSTER Article Open access 21 January 2023 SEISMIC EVIDENCE FOR UNIFORM


CRUSTAL ACCRETION ALONG SLOW-SPREADING RIDGES IN THE EQUATORIAL ATLANTIC OCEAN Article Open access 17 December 2022 REFERENCES * Herzberg, C., Condie, K. & Korenaga, J. Thermal history


of the Earth and its petrological expression. _Earth Planet. Sci. Lett._ 292, 79–88 (2010). Article  Google Scholar  * Condie, K. C., Aster, R. C. & van Hunen, J. A great thermal


divergence in the mantle beginning 2.5 Ga: geochemical constraints from greenstone basalts and komatiites. _Geosci. Front._ 7, 543–553 (2016). Article  Google Scholar  * Gurnis, M.


Large-scale mantle convection and the aggregation and dispersal of supercontinents. _Nature_ 332, 695–699 (1988). Article  Google Scholar  * Whittaker, J. M., Müller, R. D., Roest, W. R.,


Wessel, P. & Smith, W. H. F. How supercontinents and superoceans affect seafloor roughness. _Nature_ 456, 938–941 (2008). Article  Google Scholar  * Lenardic, A., Moresi, L.-N.,


Jellinek, A. M. & Manga, M. Continental insulation, mantle cooling, and the surface area of oceans and continents. _Earth Planet. Sci. Lett._ 234, 317–333 (2005). Article  Google Scholar


  * Klein, E. M. & Langmuir, C. H. Global correlations of oceanic ridge basalt chemistry with axial depth and crustal thickness. _J. Geophys. Res._ 92, 8089–8115 (1987). Article  Google


Scholar  * McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. _J. Petrol._ 29, 625–679 (1988). Article  Google Scholar  * Müller,


R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. _Geochem. Geophys. Geosyst._ 9, Q04006 (2008). Article  Google


Scholar  * Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. _Earth Planet. Sci. Lett._ 121, 435–449 (1994). Article  Google Scholar


  * White, R. S., Minshull, T. A., Bickle, M. J. & Robinson, C. J. Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. _J. Petrol._


42, 1171–1196 (2001). Article  Google Scholar  * McClain, J. S. & Atallah, C. A. Thickening of the oceanic crust with age. _Geology_ 14, 574–576 (1986). Article  Google Scholar  * Davis,


J. K., Lawver, L. A., Norton, I. O. & Gahagan, L. M. New Somali Basin magnetic anomalies and a plate model for the early Indian Ocean. _Gondwana Res._ 34, 16–28 (2016). Article  Google


Scholar  * Richards, M., Contreras-Reyes, E., Lithgow-Bertelloni, C., Ghiorso, M. & Stixrude, L. Petrological interpretation of deep crustal intrusive bodies beneath oceanic hotspot


provinces. _Geochem. Geophys. Geosyst._ 14, 604–619 (2013). Article  Google Scholar  * Eldholm, O. & Coffin, M. F. in _The History and Dynamics of Global Plate Motions_ (eds Richards, M.


A., Gordon, R. G. & Van Der Hilst, R. D.) 309–326 (Geophysical Monograph Series Vol. 121, American Geophysical Union, 2000). Book  Google Scholar  * Chen, Y. J. Oceanic crustal


thickness versus spreading rate. _Geophys. Res. Lett._ 19, 753–756 (1992). Article  Google Scholar  * Humler, E., Langmuir, C. & Daux, V. Depth versus age: new perspectives from the


chemical compositions of ancient crust. _Earth Planet. Sci. Lett._ 173, 7–23 (1999). Article  Google Scholar  * Fisk, M. & Kelley, K. A. Probing the Pacific’s oldest MORB glass: mantle


chemistry and melting conditions during the birth of the Pacific Plate. _Earth Planet. Sci. Lett._ 202, 741–752 (2002). Article  Google Scholar  * Gale, A., Langmuir, C. H. & Dalton, C.


A. The global systematics of ocean ridge basalts and their origin. _J. Petrol._ 55, 1051–1082 (2014). Article  Google Scholar  * Parsons, B. & Sclater, J. G. An analysis of the variation


of ocean floor bathymetry and heat flow with age. _J. Geophys. Res._ 82, 803–827 (1977). Article  Google Scholar  * Hillier, J. K. Subsidence of ‘normal’ seafloor: observations do indicate


‘flattening’. _J. Geophys. Res. Solid Earth_ 115, B03102 (2010). Article  Google Scholar  * Miller, K. G. et al. The Phanerozoic record of global sea-level change. _Science_ 310, 1293–1298


(2005). Article  Google Scholar  * Brandl, P. A., Regelous, M., Beier, C. & Haase, K. M. High mantle temperatures following rifting caused by continental insulation. _Nat. Geosci._ 6,


391–394 (2013). Article  Google Scholar  * Minshull, T. A. On the roughness of Mesozoic oceanic crust in the western North Atlantic. _Geophys. J. Int._ 136, 286–290 (1999). Article  Google


Scholar  * Minshull, T. A. et al. Crustal structure at the Blake Spur Fracture Zone from expanding spread profiles. _J. Geophys. Res._ 96, 9955–9984 (1991). Article  Google Scholar  * Niu,


Y. & O’Hara, M. J. Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective. _J. Petrol._ 49, 633–664 (2008). Article  Google Scholar  * Wilson, M. Thermal


evolution of the Central Atlantic passive margins: continental break-up above a Mesozoic super-plume. _J. Geol. Soc. Lond._ 154, 491–495 (1997). Article  Google Scholar  * McHone, J. G.


Non-plume magmatism and rifting during the opening of the central Atlantic Ocean. _Tectonophysics_ 316, 287–296 (2000). Article  Google Scholar  * Janney, P. E. & Castillo, P. R.


Geochemistry of the oldest Atlantic oceanic crust suggests mantle plume involvement in the early history of the central Atlantic Ocean. _Earth Planet. Sci. Lett._ 192, 291–302 (2001).


Article  Google Scholar  * Humler, E. & Besse, J. A correlation between mid-ocean-ridge basalt chemistry and distance to continents. _Nature_ 19, 607–609 (2002). Article  Google Scholar


  * Holbrook, W. S. & Kelemen, P. B. Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. _Nature_ 364, 433–436 (1993). Article 


Google Scholar  * Officer, C. B., Ewing, J. I., Hennion, J. F., Harkrider, D. G. & Miller, D. E. Geophysical investigations in the eastern Caribbean: summary of 1955 and 1956 cruises.


_Phys. Chem. Earth_ 3, 17–109 (1959). Article  Google Scholar  * Wolfe, C. J., Purdy, G. M., Toomey, D. R. & Solomon, S. C. Microearthquake characteristics and crustal velocity structure


at 29° N on the Mid-Atlantic Ridge: the architecture of a slow spreading segment. _J. Geophys. Res._ 100, 24449–24472 (1995). Article  Google Scholar  * Smallwood, J. R. & White, R. S.


Crustal accretion at the Reykjanes Ridge, 61°–62° N. _J. Geophys. Res._ 103, 5185–5201 (1998). Article  Google Scholar  * Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal


thickness along the western Galapagos spreading center and the compensation of the Galapagos hotspot swell. _Earth Planet. Sci. Lett._ 203, 311–327 (2002). Article  Google Scholar  * Larson,


R. L. Latest pulse of Earth: evidence for a mid-Cretaceous superplume. _Geology_ 19, 547–550 (1991). Article  Google Scholar  * Boyden, J. A. et al. in _Geoinformatics: Cyberinfrastructure


for the Solid Earth Sciences_ (eds Keller, G. R. & Baru, C.) 95–114 (Cambridge Univ. Press, 2011). Book  Google Scholar  * Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three


distinct types of hotspots in the Earth’s mantle. _Earth Planet. Sci. Lett._ 205, 295–308 (2003). Article  Google Scholar  * Sleep, N. H. Lateral flow of hot plume material ponded at


sublithospheric depths. _J. Geophys. Res._ 101, 28065–28083 (1996). Article  Google Scholar  * Richards, M., Contreras-Reyes, E., Lithgow-Bertelloni, C., Ghiorso, M. & Stixrude, L.


Petrological interpretation of deep crustal intrusive bodies beneath oceanic hotspot provinces. _Geochem. Geophys. Geosyst._ 14, 604–619 (2013). Article  Google Scholar  * Press, W. H.,


Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. _Numerical Recipes in Fortran: The Art of Scientific Computing_ 2nd edn, 662–664 (Cambridge Univ. Press, 1992). Google Scholar 


Download references ACKNOWLEDGEMENTS H.J.A.V.A. and J.L.H. received funding for this research from the National Science Foundation (grant OCE-1348454). J.K.D. and L.A.L. were supported by


the PLATES project at the Institute for Geophysics. We thank L. Lavier for discussions of this work. This is UTIG contribution 3013. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * University


of Texas Institute for Geophysics, Jackson School of Geosciences, Austin, Texas 78758, USA Harm J. A. Van Avendonk, Joshua K. Davis, Jennifer L. Harding & Lawrence A. Lawver Authors *


Harm J. A. Van Avendonk View author publications You can also search for this author inPubMed Google Scholar * Joshua K. Davis View author publications You can also search for this author


inPubMed Google Scholar * Jennifer L. Harding View author publications You can also search for this author inPubMed Google Scholar * Lawrence A. Lawver View author publications You can also


search for this author inPubMed Google Scholar CONTRIBUTIONS H.J.A.V.A. and J.L.H. compiled the marine seismic refraction data from the science literature. J.K.D. and L.A.L. carried out


plate-tectonic reconstructions. H.J.A.V.A. wrote the paper with contributions and edits from all other authors. CORRESPONDING AUTHOR Correspondence to Harm J. A. Van Avendonk. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information (PDF 1028 kb)


SUPPLEMENTARY INFORMATION Supplementary Information (XLSX 32 kb) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Van Avendonk, H., Davis, J., Harding, J.


_et al._ Decrease in oceanic crustal thickness since the breakup of Pangaea. _Nature Geosci_ 10, 58–61 (2017). https://doi.org/10.1038/ngeo2849 Download citation * Received: 22 June 2016 *


Accepted: 02 November 2016 * Published: 12 December 2016 * Issue Date: January 2017 * DOI: https://doi.org/10.1038/ngeo2849 SHARE THIS ARTICLE Anyone you share the following link with will


be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative