Mechanism of silk processing in insects and spiders

Mechanism of silk processing in insects and spiders


Play all audios:

Loading...

ABSTRACT Silk spinning by insects and spiders leads to the formation of fibres that exhibit high strength and toughness1. The lack of understanding of the protein processing in silk glands


has prevented the recapitulation of these properties _in vitro_ from reconstituted or genetically engineered silks. Here we report the identification of emulsion formation and micellar


structures from aqueous solutions of reconstituted silkworm silk fibroin as a first step in the process to control water and protein–protein interactions. The sizes (100–200 nm diameter) of


these structures could be predicted from hydrophobicity plots of silk protein primary sequence2. These micelles subsequently aggregated into larger ‘globules’ and gel‐like states as the


concentration of silk fibroin increased, while maintaining solubility owing to the hydrophilic regions of the protein interspersed among the larger hydrophobic regions. Upon physical


shearing or stretching structural transitions, increased birefringence and morphological alignment were demonstrated, indicating that this process mimics the behaviour of similar native silk


proteins _in vivo_. Final morphological features of these silk materials are similar to those observed in native silkworm fibres. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per


year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during


checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS EXPLORING THE


SELF-ASSEMBLY OF SILK PROTEINS THROUGH LIQUID-LIQUID PHASE SEPARATION Article Open access 28 April 2025 MOLECULAR ORGANIZATION OF FIBROIN HEAVY CHAIN AND MECHANISM OF FIBRE FORMATION IN


_BOMBYX MORI_ Article Open access 29 June 2024 THE SILK OF GORSE SPIDER MITE _TETRANYCHUS LINTEARIUS_ REPRESENTS A NOVEL NATURAL SOURCE OF NANOPARTICLES AND BIOMATERIALS Article Open access


28 October 2020 REFERENCES * Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. _Nature_ 410, 541–548 (2001) Article  ADS  CAS  Google Scholar  * Zhou, C. Z. et al.


Fine organization of _Bombyx mori_ fibroin heavy chain gene. _Nucleic Acids Res._ 28, 2413–2419 (2000) Article  CAS  Google Scholar  * Altman, G. H. et al. Silk matrix for tissue engineered


anterior cruciate ligaments. _Biomaterials_ 23, 4131–4141 (2002) Article  CAS  Google Scholar  * Mita, K., Ichimura, S. & James, T. C. Highly repetitive structure and its organization


of the silk fibroin gene. _J. Mol. Evol._ 38, 583–592 (1994) Article  ADS  CAS  Google Scholar  * Yamada, H., Nakao, H., Takasu, Y. & Tsubouchi, K. Preparation of undegraded native


molecular fibroin solution from silkworm cocoons. _Mater. Sci. Eng. C_ 14, 41–46 (2001) Article  Google Scholar  * Sofia, S., McCarthy, M. B., Gronowicz, G. & Kaplan, D. L.


Functionalized silk-based biomaterials for bone formation. _J. Biomed. Mater. Res._ 54, 139–148 (2001) Article  CAS  Google Scholar  * Jin, H.-J., Fridrikh, S. V., Rutledge, G. C. &


Kaplan, D. L. Electrospinning _Bombyx mori_ silk with poly(ethylene oxide). _Biomacromolecules_ 3, 1233–1239 (2002) Article  CAS  Google Scholar  * Roseman, M. A. Hydrophilicity of polar


amino-acid side-chain is markedly reduced by flanking peptide-bonds. _J. Mol. Biol._ 200, 513–522 (1988) Article  CAS  Google Scholar  * Ochi, A., Hossain, K. S., Magoshi, J. & Nemoto,


N. Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of _Bombyx mori_ silkworm. _Biomacromolecules_ 3, 1187–1196 (2002) Article  CAS  Google


Scholar  * Discher, D. E. & Eisenberg, A. Polymer vesicles. _Science_ 297, 967–973 (2002) Article  ADS  CAS  Google Scholar  * Malstom, M. & Lindman, B. Self-assembly in aqueous


block copolymer solutions. _Macromolecules_ 25, 5440–5445 (1992) Article  ADS  Google Scholar  * Kwon, K. W., Park, M. J., Bae, Y. H., Kim, H. D. & Char, K. Gelation behavior of


PEO-PLGA-PEO triblock copolymers in water. _Polymer_ 43, 3353–3358 (2002) Article  CAS  Google Scholar  * Magoshi, J., Mizuide, M. & Magoshi, Y. Physical properties and structure of


silk. VI. Conformational changes in silk fibroin induced by immersion in water at 2 to 130 °C. _J. Polym. Sci._ 17 (Polymer Physics Edition), 515–520 (1979) CAS  Google Scholar  * Ishida,


M., Asakura, T., Yoko, M. & Saito, H. Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studied by high-resolution solid-state 13C NMR spectroscopy.


_Macromolecules_ 23, 88–94 (1990) Article  ADS  CAS  Google Scholar  * Seidel, A. et al. Regenerated spider silk: Processing, properties, and structure. _Macromolecules_ 33, 775–780 (2000)


Article  ADS  CAS  Google Scholar  * Valluzzi, R., Szela, S., Avtges, P., Kirschner, D. & Kaplan, D. L. Methionine redox controlled crystallization of biosynthetic silk spidroin. _J.


Phys. Chem. B_ 103, 11382–11392 (1999) Article  CAS  Google Scholar  * Wilson, D., Valluzzi, R. & Kaplan, D. Conformational transitions in model silk peptides. _Biophys. J._ 78,


2690–2701 (2001) Article  Google Scholar  * Shen, Y., Johnson, M. A. & Martin, D. C. Microstructural characterization of _Bombyx mori_ silk fibers. _Macromolecules_ 31, 8857–8864 (1998)


Article  ADS  CAS  Google Scholar  * Asakura, T., Kuzuhara, A., Tabeta, R. & Saitô, H. Conformation characterization of _Bombyx mori_ silk fibroin in the solid state by high-frequency


13C cross polarization-magic angle spinning NMR, X-ray diffraction, and infra spectroscopy. _Macromolecules_ 18, 1841–1845 (1985) Article  ADS  CAS  Google Scholar  * Putthanarat, S.,


Stribeck, N., Fossey, S. A., Eby, R. K. & Adams, W. W. Investigation of the nanofibrils of silk fibers. _Polymer_ 41, 7735–7747 (2000) Article  CAS  Google Scholar  * van Beek, J. D.,


Hess, S., Vollrath, F. & Meier, B. H. The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. _Proc. Natl Acad. Sci. USA_ 99, 10266–10271 (2002)


Article  ADS  CAS  Google Scholar  * Perez-Rigueiro, J., Viney, C., Llorca, J. & Elices, M. Silkworm silk as an engineering material. _J. Appl. Polym. Sci._ 70, 2439–2447 (1998) Article


  CAS  Google Scholar  * Poza, P., Pérez-Rigueiro, J., Elices, M. & Llorca, J. Fractographic analysis of silkworm and spider silk. _Eng. Fracture Mech._ 69, 1035–1048 (2002) Article 


Google Scholar  * Auvray, X. et al. Influence of solvent headgroup interactions on the formation of lyotropic liquid crystal phases of surfactants in water and nonaqueous protic and aprotic


solvents. _Langmuir_ 8, 2671–2679 (1992) Article  CAS  Google Scholar  * Lele, A. K. et al. Deformation induced hydrophobicity: Implications in spider silk formation. _Chem. Eng. Sci._ 56,


5793–5800 (2001) Article  CAS  Google Scholar  * Tanaka, T. et al. Phase separation structure in poly(vinyl alcohol) silk fibroin blend films. _Polym. Int._ 45, 175–184 (1998) Article  CAS 


Google Scholar  * Knight, D. P. & Vollrath, F. Biological liquid crystal elastomers. _Phil. Trans. R. Soc. Lond. B_ 357, 155–163 (2002) Article  CAS  Google Scholar  * Knight, D. P.


& Vollrath, F. Liquid crystals and flow elongation in a spider's silk production line. _Proc. R. Soc. Lond. B_ 266, 519–523 (1999) Article  Google Scholar  * Viney, C. Natural


silks: Archetypal supramolecular assembly of polymer fibres. _Supramol. Sci._ 4, 75–81 (1997) Article  CAS  Google Scholar  * Minoura, N., Tsukada, M. & Nagura, M. Physico-chemical


properties of silk fibroin membrane as a biomaterial. _Biomaterials_ 11, 430–434 (1990) Article  CAS  Google Scholar  * Altman, G. H. et al. Silk-based biomaterials. _Biomaterials_ 24,


401–416 (2003) Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank R. Valluzzi and J. Park for technical input. This work was supported by the NIH, the NSF and the


DoD (Air Force). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Departments of Chemical & Biological Engineering & Biomedical Engineering, Tufts University, Medford, Massachusetts,


02155, USA Hyoung-Joon Jin & David L. Kaplan Authors * Hyoung-Joon Jin View author publications You can also search for this author inPubMed Google Scholar * David L. Kaplan View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to David L. Kaplan. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare


that they have no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Jin, HJ., Kaplan, D. Mechanism of silk processing in


insects and spiders. _Nature_ 424, 1057–1061 (2003). https://doi.org/10.1038/nature01809 Download citation * Received: 22 April 2003 * Accepted: 27 May 2003 * Issue Date: 28 August 2003 *


DOI: https://doi.org/10.1038/nature01809 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative