Seasonal origin of the thermal maxima at the holocene and the last interglacial

Seasonal origin of the thermal maxima at the holocene and the last interglacial


Play all audios:

Loading...

ABSTRACT Proxy reconstructions from marine sediment cores indicate peak temperatures in the first half of the last and current interglacial periods (the thermal maxima of the Holocene epoch,


10,000 to 6,000 years ago, and the last interglacial period, 128,000 to 123,000 years ago) that arguably exceed modern warmth1,2,3. By contrast, climate models simulate monotonic warming


throughout both periods4,5,6,7. This substantial model–data discrepancy undermines confidence in both proxy reconstructions and climate models, and inhibits a mechanistic understanding of


recent climate change. Here we show that previous global reconstructions of temperature in the Holocene1,2,3 and the last interglacial period8 reflect the evolution of seasonal, rather than


annual, temperatures and we develop a method of transforming them to mean annual temperatures. We further demonstrate that global mean annual sea surface temperatures have been steadily


increasing since the start of the Holocene (about 12,000 years ago), first in response to retreating ice sheets (12 to 6.5 thousand years ago), and then as a result of rising greenhouse gas


concentrations (0.25 ± 0.21 degrees Celsius over the past 6,500 years or so). However, mean annual temperatures during the last interglacial period were stable and warmer than estimates of


temperatures during the Holocene, and we attribute this to the near-constant greenhouse gas levels and the reduced extent of ice sheets. We therefore argue that the climate of the Holocene


differed from that of the last interglacial period in two ways: first, larger remnant glacial ice sheets acted to cool the early Holocene, and second, rising greenhouse gas levels in the


late Holocene warmed the planet. Furthermore, our reconstructions demonstrate that the modern global temperature has exceeded annual levels over the past 12,000 years and probably approaches


the warmth of the last interglacial period (128,000 to 115,000 years ago). Access through your institution Buy or subscribe This is a preview of subscription content, access via your


institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel


any time Learn more Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS GLACIAL COOLING AND CLIMATE SENSITIVITY REVISITED Article 26 August 2020 COMPLEX


SPATIO-TEMPORAL STRUCTURE OF THE HOLOCENE THERMAL MAXIMUM Article Open access 03 October 2022 THE 4.2 KA EVENT IS NOT REMARKABLE IN THE CONTEXT OF HOLOCENE CLIMATE VARIABILITY Article Open


access 02 August 2024 DATA AVAILABILITY The datasets generated and compiled for this study are available in the NOAA Database, World Data Service for Paleoclimatology at


https://www.ncdc.noaa.gov/paleo/study/31752. International Comprehensive Ocean-Atmosphere Data Set data were provided by the National Oceanic and Atmospheric Administration/Oceanic and


Atmospheric Research/Earth System Research Laboratories Physical Sciences Laboratory at https://psl.noaa.gov/. Source data are provided with this paper. CODE AVAILABILITY A MATLAB code that


implements the SAT method is available on GitHub (https://github.com/sambova/SAT). CHANGE HISTORY * _ 01 FEBRUARY 2021 This Article was amended to correct the Peer review information, which


was originally incorrect. _ REFERENCES * Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. _Sci. Data_ 7, 201 (2020). CAS  PubMed  PubMed


Central  Google Scholar  * Kaufman, D. et al. A global database of Holocene paleotemperature records. _Sci. Data_ 7, 183 (2020). PubMed  PubMed Central  Google Scholar  * Marcott, S. A.,


Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. _Science_ 339, 1198–1201 (2013). Article  ADS  CAS  Google Scholar


  * Liu, Z. et al. The Holocene temperature conundrum. _Proc. Natl Acad. Sci. USA_ 111, E3501–E3505 (2014). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Brierley, C. M. et al.


Large-scale features and evaluation of the PMIP4-CMIP6 mid-Holocene simulations. _Clim. Past Discuss_. 2020, 1–35 (2020). Google Scholar  * Varma, V., Prange, M. & Schulz, M. Transient


simulations of the present and the last interglacial climate using the Community Climate System Model version 3: effects of orbital acceleration. _Geosci. Model Dev_. 9, 3859–3873 (2016).


ADS  Google Scholar  * Lu, Z., Liu, Z., Chen, G. & Guan, J. Prominent precession band variance in ENSO intensity over the last 300,000 years. _Geophys. Res. Lett_. 46, 9786–9795 (2019).


ADS  Google Scholar  * Hoffman, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. _Science_ 355, 276–279 (2017).


ADS  CAS  PubMed  Google Scholar  * Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. _Proc. Natl Acad.


Sci. USA_ 105, 13252–13257 (2008). ADS  CAS  PubMed  PubMed Central  Google Scholar  * PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and


simulations over the Common Era. _Nat. Geosci_. 12, 643–649 (2019). ADS  CAS  PubMed Central  Google Scholar  * Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S.


Reconciling divergent trends and millennial variations in Holocene temperatures. _Nature_ 554, 92–96 (2018). ADS  CAS  PubMed  Google Scholar  * Rodriguez, L. G. et al. Mid-Holocene,


coral-based sea surface temperatures in the western tropical Atlantic. _Paleoceanogr. Paleoclimatol_. 34, 1234–1245 (2019). ADS  Google Scholar  * Timmermann, A., Sachs, J. & Timm, O. E.


Assessing divergent SST behavior during the last 21 ka derived from alkenones and _G. ruber_-Mg/Ca in the equatorial Pacific. _Paleoceanogr. Paleoclimatol_. 29, 680–696 (2014). ADS  Google


Scholar  * Leduc, G., Schneider, R., Kim, J.-H. & Lohmann, G. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. _Quat. Sci. Rev_. 29,


989–1004 (2010). ADS  Google Scholar  * Liu, Y. et al. A possible role of dust in resolving the Holocene temperature conundrum. _Sci. Rep_. 8, 4434 (2018). ADS  PubMed  PubMed Central 


Google Scholar  * Park, H.-S., Kim, S.-J., Stewart, A. L., Son, S.-W. & Seo, K.-H. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. _Sci. Adv_. 5, eaax8203


(2019). ADS  PubMed  PubMed Central  Google Scholar  * Affolter, S. et al. Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years.


_Sci. Adv_. 5, eaav3809 (2019). ADS  PubMed  PubMed Central  Google Scholar  * Martin, C. et al. Early Holocene Thermal Maximum recorded by branched tetraethers and pollen in Western Europe


(Massif Central, France). _Quat. Sci. Rev_. 228, (2020). * Longo, W. M. et al. Insolation and greenhouse gases drove Holocene winter and spring warming in Arctic Alaska. _Quat. Sci. Rev_.


242, 106438 (2020). Google Scholar  * Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A. 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4,


and N2O and their radiative forcing. _Earth Syst. Sci. Data_ 9, 363–387 (2017). ADS  Google Scholar  * Huybers, P. & Eisenman, I. (eds) _NOAA/NCDC Paleoclimatology Program_,


http://eisenman.ucsd.edu/code/daily_insolation.m (IGBP PAGES/World Data Center for Paleoclimatology, 2006). * Berger, A. Long-term variations of daily insolation and Quaternary climatic


changes. _J. Atmos. Sci_. 35, 2362–2367 (1978). ADS  Google Scholar  * Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate record. _Int. J. Climatol_. 37,


2211–2232 (2017). Google Scholar  * Be, A. & Hamilton, W. H. Ecology of recent planktonic foraminifera. _Micropaleontology_ 13, 87–106 (1967). Google Scholar  * De Deckker, P. The


Indo-Pacific warm pool: critical to world oceanography and world climate. _Geosci. Lett_. 3, 20 (2016). ADS  Google Scholar  * Moffa-Sanchez, P., Rosenthal, Y., Babila, T. L., Mohtadi, M.


& Zhang, X. Temperature evolution of the Indo-Pacific warm pool over the Holocene and the last deglaciation. _Paleoceanogr. Paleoclimatol_. 34, 1107–1123 (2019). ADS  Google Scholar  *


Ruddiman, W., He, F., Vavrus, S. & Kutzbach, J. The early anthropogenic hypothesis: a review. _Quat. Sci. Rev_. 240, 106386 (2020). Google Scholar  * Studer, A. S. et al. Increased


nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. _Nat. Geosci_. 11, 756–760 (2018). ADS  CAS  Google Scholar  *


Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. _Q. J. R. Meteorol. Soc_. 140, 1935–1944 (2014). ADS  Google Scholar


  * Pausata, F. S. R. et al. The greening of the Sahara: past changes and future implications. _One Earth_ 2, 235–250 (2020). ADS  Google Scholar  * Ritchie, J. C., Cwynar, L. C. &


Spear, R. W. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. _Nature_ 305, 126–128 (1983). ADS  Google Scholar  * McKay, N. P., Kaufman, D. S., Routson,


C. C., Erb, M. P. & Zander, P. D. The onset and rate of Holocene neoglacial cooling in the Arctic. _Geophys. Res. Lett_. 45, 12487–12496 (2018). ADS  Google Scholar  * Hays, J. D.,


Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker of the Ice Ages. _Science_ 194, 1121–1132 (1976). ADS  CAS  PubMed  Google Scholar  * Milankovitch, M. _Kanon


Der Erdbestrahlung Und Seine Anwendung Auf Das Eiszeitenproblem_ (Mihaila Ćurčića, 1941). * Imbrie, J. et al. On the structure and origin of major glaciation cycles. 1. Linear responses to


Milankovitch forcing. _Paleoceanogr. Paleoclimatol_. 7, 701–738 (1992). ADS  Google Scholar  * Wang, P. X. et al. The global monsoon across time scales: mechanisms and outstanding issues.


_Earth Sci. Rev_. 174, 84–121 (2017). ADS  CAS  Google Scholar  * Clark, P. U. et al. Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. _Nature_ 577, 660–664


(2020). ADS  CAS  PubMed  Google Scholar  * Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene.


_Proc. Natl Acad. Sci. USA_ 111, 15296–15303 (2014). ADS  CAS  PubMed  PubMed Central  Google Scholar  * Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the


past 150,000 years. _Nature_ 491, 744–747 (2012). ADS  CAS  PubMed  Google Scholar  * Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP.


_Radiocarbon_ 55, 1869–1887 (2013). CAS  Google Scholar  * Rafter, P. A., Herguera, J.-C. & Southon, J. R. Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal


and infaunal benthic foraminifera in a wood-dated sediment core. _Clim. Past_ 14, 1977–1989 (2018). Google Scholar  * Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P. & Sarmiento,


J. L. The impact of atmospheric _p_CO2 on carbon isotope ratios of the atmosphere and ocean. _Glob. Biogeochem. Cycles_ 29, 307–324 (2015). ADS  CAS  Google Scholar  * Haslett, J. &


Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. _J. R. Stat. Soc. C_ 57, 399–418 (2008). MathSciNet  MATH  Google Scholar  * Lisiecki, L. E.


& Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. _Paleoceanogr. Paleoclimatol_. 20, https://doi.org/10.1029/2004PA001071 (2005). * Shackleton,


N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial‐scale events 64,000–24,000 years ago. _Paleoceanogr. Paleoclimatol_. 15, 565–569 (2000). ADS  Google Scholar  *


Rosenthal, Y., Boyle, E. A. & Slowey, N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama


Bank: prospects for thermocline paleoceanography. _Geochim. Cosmochim. Acta_ 61, (1997). * Rosenthal, Y., Field, M. P. & Sherrell, R. M. Precise determination of element/calcium ratios


in calcareous samples using sector field inductively coupled plasma mass spectrometry. _Anal. Chem_. 71, 3248–3253 (1999). CAS  PubMed  Google Scholar  * Rosenthal, Y., Holbourn, A. E.,


Kulhanek, D. K. & Expedition 363 Scientists. Western Pacific Warm Pool. In _Proc. IODP_ Vol. 363, https://doi.org/10.14379/iodp.proc.363.2018 (International Ocean Discovery Program,


2018). * Minoshima, K., Kawahata, H. & Ikehara, K. Changes in biological production in the mixed water region (MWR) of the northwestern North Pacific during the last 27 kyr.


_Palaeogeogr. Palaeoclimatol. Palaeoecol_. 254, 430–447 (2007). Google Scholar  * Bard, E. et al. Retreat velocity of the North Atlantic polar front during the last deglaciation determined


by 14C accelerator mass spectrometry. _Nature_ 328, 791–794 (1987). ADS  Google Scholar  * Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological impact of Heinrich events in the


subtropical northeast Atlantic. _Science_ 289, 1321–1324 (2000). ADS  CAS  PubMed  Google Scholar  * Martrat, B. et al. Four climate cycles of recurring deep and surface water


destabilizations on the Iberian margin. _Science_ 317, 502–507 (2007). ADS  CAS  PubMed  Google Scholar  * Rodrigo-Gámiz, M., Martínez-Ruiz, F., Rampen, S. W., Schouten, S. & Sinninghe


Damsté, J. S. Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: a dual-organic proxy (UK′37 and LDI) approach. _Paleoceanogr. Paleoclimatol_. 29,


87–98 (2014). ADS  Google Scholar  * Cacho, I. et al. Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. _Paleoceanogr. Paleoclimatol_. 14, 698–705 (1999). ADS


  Google Scholar  * Isono, D. et al. The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene. _Geology_ 37, 591–594 (2009). ADS  Google Scholar  * Yamamoto,


M., Yamamuro, M. & Tanaka, Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing. _Quat. Sci. Rev_. 26, 405–414


(2007). ADS  Google Scholar  * Herbert, T. D. et al. Collapse of the California Current during glacial maxima linked to climate change on land. _Science_ 293, 71–76 (2001). ADS  CAS  PubMed


  Google Scholar  * Ziegler, M., Nürnberg, D., Karas, C., Tiedemann, R. & Lourens, L. J. Persistent summer expansion of the Atlantic Warm Pool during glacial abrupt cold events. _Nat.


Geosci_. 1, 601–605 (2008). ADS  CAS  Google Scholar  * Schmidt, M. W., Weinlein, W. A., Marcantonio, F. & Lynch-Stieglitz, J. Solar forcing of Florida Straits surface salinity during


the early Holocene. _Paleoceanogr. Paleoclimatol_. 27, https://doi.org/10.1029/2012PA002284 (2012). * Zhao, M., Beveridge, N. A. S., Shackleton, N. J., Sarnthein, M. & Eglinton, G.


Molecular stratigraphy of cores off northwest Africa: sea surface temperature history over the last 80 Ka. _Paleoceanogr. Paleoclimatol_. 10, 661–675 (1995). ADS  Google Scholar  * Schmidt,


M. W., Spero, H. J. & Lea, D. W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. _Nature_ 428, 160–163 (2004). ADS  CAS  PubMed  Google


Scholar  * Schmidt, M. W. et al. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. _Proc. Natl Acad. Sci. USA_ 109, 14348–14352 (2012). ADS  CAS  PubMed


  PubMed Central  Google Scholar  * Lea, D. W., Pak, D. K., Peterson, L. C. & Hughen, K. A. Synchroneity of tropical and high-latitude Atlantic tmperatures over the Last Glacial


Termination. _Science_ 301, 1361–1364 (2003). ADS  CAS  PubMed  Google Scholar  * de Garidel-Thoron, T., Beaufort, L., Linsley, B. K. & Dannenmann, S. Millennial-scale dynamics of the


east Asian winter monsoon during the last 200,000 years. _Paleoceanogr. Paleoclimatol_. 16, 491–502 (2001). ADS  Google Scholar  * Rosenthal, Y., Oppo, D. W. & Linsley, B. K. The


amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. _Geophys. Res. Lett_. 30, https://doi.org/10.1029/2002GL016612 (2003). *


Zhao, M., Huang, C.-Y., Wang, C.-C. & Wei, G. A millennial-scale U37K′ sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: monsoon and sea-level


influence. _Palaeogeogr. Palaeoclimatol. Palaeoecol_. 236, 39–55 (2006). Google Scholar  * Pelejero, C., Grimalt, J. O., Heilig, S., Kienast, M. & Wang, L. High-resolution UK37


temperature reconstructions in the South China Sea over the past 220 kyr. _Paleoceanogr. Paleoclimatol_. 14, 224–231 (1999). ADS  Google Scholar  * Benway, H. M., Mix, A. C., Haley, B. A.


& Klinkhammer, G. P. Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr. _Paleoceanogr. Paleoclimatol_. 21, https://doi.org/10.1029/2005PA001208 (2006). * Dubois,


N., Kienast, M., Normandeau, C. & Herbert, T. D. Eastern equatorial Pacific cold tongue during the Last Glacial Maximum as seen from alkenone paleothermometry. _Paleoceanogr.


Paleoclimatol_. 24, https://doi.org/10.1029/2009PA001781 (2009). * Bolliet, T. et al. Mindanao Dome variability over the last 160 kyr: episodic glacial cooling of the West Pacific Warm Pool.


_Paleoceanogr. Paleoclimatol_. 26, https://doi.org/10.1029/2010PA001966 (2011). * Kienast, M., Steinke, S., Stattegger, K. & Calvert, S. E. Synchronous tropical South China Sea SST


change and Greenland warming during deglaciation. _Science_ 291, 2132–2134 (2001). ADS  CAS  PubMed  Google Scholar  * Fan, W. et al. Variability of the Indonesian throughflow in the


Makassar Strait over the last 30 ka. _Sci. Rep_. 8, 5678 (2018). ADS  PubMed  PubMed Central  Google Scholar  * Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 years of


west African monsoon and ocean thermal evolution. _Science_ 316, 1303–1307 (2007). ADS  CAS  PubMed  Google Scholar  * Weldeab, S., Schneider, R. R., Kölling, M. & Wefer, G. Holocene


African droughts relate to eastern equatorial Atlantic cooling. _Geology_ 33, 981–984 (2005). ADS  CAS  Google Scholar  * Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of Late


Quaternary equatorial Pacific sea surface temperature variations. _Science_ 289, 1719–1724 (2000). ADS  CAS  PubMed  Google Scholar  * Lea, D. W. et al. Paleoclimate history of Galápagos


surface waters over the last 135,000yr. _Quat. Sci. Rev_. 25, 1152–1167 (2006). ADS  Google Scholar  * Pena, L. D., Cacho, I., Ferretti, P. & Hall, M. A. El Niño–Southern


Oscillation–like variability during glacial terminations and interlatitudinal teleconnections. _Paleoceanogr. Paleoclimatol_. 23, https://doi.org/10.1029/2008PA001620 (2008). * Schröder, J.


F., Holbourn, A., Kuhnt, W. & Küssner, K. Variations in sea surface hydrology in the southern Makassar Strait over the past 26 kyr. _Quat. Sci. Rev_. 154, 143–156 (2016). ADS  Google


Scholar  * Linsley, B. K., Rosenthal, Y. & Oppo, D. W. Holocene evolution of the Indonesian throughflow and the western Pacific Warm Pool. _Nat. Geosci_. 3, 578–583 (2010). ADS  CAS 


Google Scholar  * Bova, S. C. et al. Links between eastern equatorial Pacific stratification and atmospheric CO2 rise during the last deglaciation. _Paleoceanogr. Paleoclimatol_. 30,


1407–1424 (2015). ADS  Google Scholar  * Arz, H. W., Pätzold, J. & Wefer, G. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from


last-glacial marine deposits off northeastern Brazil. _Quat. Res_. 50, 157–166 (1998). CAS  Google Scholar  * Weldeab, S., Schneider, R. R. & Kölling, M. Deglacial sea surface


temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities. _Earth Planet. Sci. Lett_. 241, 699–706 (2006). ADS  CAS  Google


Scholar  * Visser, K., Thunell, R. & Stott, L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. _Nature_ 421, 152–155 (2003). ADS  CAS 


PubMed  Google Scholar  * Lückge, A. et al. Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300,000 years. _Paleoceanogr.


Paleoclimatol_. 24, https://doi.org/10.1029/2008PA001627 (2009). * Gibbons, F. T. et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian oceans. _Earth Planet.


Sci. Lett_. 387, 240–251 (2014). ADS  CAS  Google Scholar  * Xu, J., Holbourn, A., Kuhnt, W., Jian, Z. & Kawamura, H. Changes in the thermocline structure of the Indonesian outflow


during Terminations I and II. _Earth Planet. Sci. Lett_. 273, 152–162 (2008). ADS  CAS  Google Scholar  * Lawrence, K. T. & Herbert, T. D. Late Quaternary sea-surface temperatures in the


western Coral Sea: implications for the growth of the Australian Great Barrier Reef. _Geology_ 33, 677–680 (2005). ADS  Google Scholar  * Lopes dos Santos, R. A. et al. Abrupt vegetation


change after the Late Quaternary megafaunal extinction in southeastern Australia. _Nat. Geosci_. 6, 627–631 (2013). ADS  CAS  Google Scholar  * Lopes dos Santos, R. A. et al. Comparison of


organic (UK´37, TEXH86, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia.


_Paleoceanogr. Paleoclimatol_. 28, 377–387 (2013). ADS  Google Scholar  * Pahnke, K. & Sachs, J. P. Sea surface temperatures of southern midlatitudes 0–160 kyr B.P. _Paleoceanogr.


Paleoclimatol_. 21, https://doi.org/10.1029/2005PA001191 (2006). * Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment


trap time series. _Paleoceanogr. Paleoclimatol_. 18, https://doi.org/10.1029/2002PA000846 (2003). * Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L. & Thirumalai, K. Bayesian


calibration of the Mg/Ca paleothermometer in planktic foraminifera. _Paleoceanogr. Paleoclimatol_. 34, 2005–2030 (2019). ADS  Google Scholar  * Gray, W. R. & Evans, D. Nonthermal


influences on Mg/Ca in planktonic foraminifera: a review of culture studies and application to the Last Glacial Maximum. _Paleoceanogr. Paleoclimatol_. 34, 306–315 (2019). ADS  Google


Scholar  * Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. _Geochim. Cosmochim. Acta_ 52,


2303–2310 (1988). ADS  CAS  Google Scholar  * Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. _Paleoceanogr. Paleoclimatol_. 33, 281–301


(2018). ADS  Google Scholar  * Schneider, T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. _J. Clim_. 14, 853–871


(2001). ADS  Google Scholar  * Yeager, S. G., Shields, C. A., Large, W. G. & Hack, J. J. The low-resolution CCSM3. _J. Clim_. 19, 2545–2566 (2006). ADS  Google Scholar  * Timmermann, A.,


Lorenz, S. J., An, S.-I., Clement, A. & Xie, S.-P. The effect of orbital forcing on the mean climate and variability of the tropical Pacific. _J. Clim_. 20, 4147–4159 (2007). ADS 


Google Scholar  * Delcroix, T. et al. Sea surface temperature and salinity seasonal changes in the western Solomon and Bismarck seas. _J. Geophys. Res. Oceans_ 119, 2642–2657 (2014). ADS 


Google Scholar  * Palmer, M. R. & Pearson, P. N. A. 23,000-year record of surface water pH and _p_CO2 in the western equatorial Pacific Ocean. _Science_ 300, 480–482 (2003). ADS  CAS 


PubMed  Google Scholar  * Sikes, E. L., O’Leary, T., Nodder, S. D. & Volkman, J. K. Alkenone temperature records and biomarker flux at the subtropical front on the Chatham Rise, SW


Pacific Ocean. _Deep Sea Res. Part I_ 52, 721–748 (2005). ADS  CAS  Google Scholar  * King, A. L. & Howard, W. Planktonic foraminiferal δ13C records from Southern Ocean sediment traps:


new estimates of the oceanic Suess Effect. _Glob. Biogeochem. Cycles_ 18, GB2007 (2004). ADS  Google Scholar  * Park, E. M. _Variations In GDGT Flux And TEX Thermometry In Three Distinct


Oceanic Regimes Of The Atlantic Ocean: A Sediment Trap Study_. https://epic.awi.de/id/eprint/51148/1/EPark_PhDThesis_2019.pdf PhD thesis, University of Bremen (2019). * Amante, C. &


Eakins, B. W. _ETOPO1 Global Relief Model Converted To PanMap Layer Format_. https://doi.org/10.1594/PANGAEA.769615 (NOAA-National Geophysical Data Center, PANGAEA, 2009). * Emile-Geay, J.,


McKay, N. P., Wang, J. & Anchukaitis, K. J. _CommonClimate/PAGES2k_phase2 code: first public release_ https://doi.org/10.5281/zenodo.545815 (2017). Download references ACKNOWLEDGEMENTS


This research used samples and data provided by the International Ocean Discovery Program (IODP). We thank the science party, technical staff and crew of IODP Expedition 363, who together


ensured the successful recovery of IODP Site U1485. Funding for this research was provided by NSF grants OCE-1834208 and OCE-1810681, the NSF-sponsored US Science Support Program for IODP,


the Institute of Earth, Ocean, and Atmospheric Sciences at Rutgers University, the Chinese NSF (grant NSFC41630527), Chinese MOST (grant 2017YFA0603801), the School of Geography, Nanjing


Normal University and the USIEF-Fulbright Program. AUTHOR INFORMATION Author notes * Shital P. Godad Present address: Department of Geosciences, National Taiwan University, Taipei, Taiwan


AUTHORS AND AFFILIATIONS * Department of Marine and Coastal Sciences, Rutgers, State University of New Jersey, New Brunswick, NJ, USA Samantha Bova, Yair Rosenthal & Shital P. Godad *


Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, USA Yair Rosenthal * Atmospheric Science Program, Department of Geography, The Ohio State University,


Columbus, OH, USA Zhengyu Liu * School of Geography, Nanjing Normal University, Nanjing, China Mi Yan * Open Studio for Ocean-Climate-Isotope Modeling, Pilot National Laboratory for Marine


Science and Technology, Qingdao, China Mi Yan Authors * Samantha Bova View author publications You can also search for this author inPubMed Google Scholar * Yair Rosenthal View author


publications You can also search for this author inPubMed Google Scholar * Zhengyu Liu View author publications You can also search for this author inPubMed Google Scholar * Shital P. Godad


View author publications You can also search for this author inPubMed Google Scholar * Mi Yan View author publications You can also search for this author inPubMed Google Scholar


CONTRIBUTIONS S.B. and Y.R. derived the empirical form of the SAT method. S.B. compiled and analysed the proxy datasets and wrote the first manuscript draft. S.B. and S.P.G. collected the


geochemical data from Site U1485 under the supervision of Y.R. Z.L. and M.Y. provided access to and interpretation of model results, and the theory explaining the SAT method. All authors


provided review and editing. CORRESPONDING AUTHOR Correspondence to Samantha Bova. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION


PEER REVIEW INFORMATION _Nature_ thanks Jeroen Groeneveld, Jennifer Hertzberg, Feng Zhu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.


PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. EXTENDED DATA FIGURES AND TABLES EXTENDED DATA FIG. 1


LOCATION MAP OF IODP SITE U1485. Bathymetric map of the northern margin of Papua New Guinea showing the location of IODP Site U1485 (yellow circle)48,104. Contour interval is 500 m. Map


constructed using the M_Map software package for MATLAB. EXTENDED DATA FIG. 2 AGE–DEPTH MODEL FOR HOLOCENE AND TERMINATION I SECTION OF IODP SITE U1485. A, Reservoir age estimates calculated


by measuring co-occurring wood and _G. ruber_ 14C ages and subtracting the wood 14C age from planktic foraminifer 14C age. Twelve reservoir age estimates were deemed outliers (see Methods)


and are not shown. Shading represents 2_σ_ error estimate. B, Final age model for the upper 27.5 m CCSF-A of Site U1485 constructed using the Bchron age modelling software package for R43.


Sedimentation across the Holocene is approximately constant at a rate of 62 cm kyr−1. Shading represents the 3_σ_ error estimate. The red square indicates an outlying 14C date that is not


included in the final age model. EXTENDED DATA FIG. 3 AGE–DEPTH MODEL FOR LIG AND TERMINATION II SECTION OF IODP SITE U1485. Benthic foraminiferal δ18O record from Site U1485 (blue) measured


on _Cibicidoides pachyderma_ (>212 μm) plotted with the LR04 benthic stack (black)44 and the benthic foraminifer δ18O record from Site MD95-2042 from the Iberian Margin (purple)45.


Dashed lines show tie points used to define age control for the LIG and Termination II section of Site U1485. Depth scale for Site U1485 is CCSF-A. Foraminiferal δ18O for Site U1485 and


MD95-2042 are reported relative to the Pee Dee belemnite (PDB) standard. EXTENDED DATA FIG. 4 MG/CA-TEMPERATURE CALIBRATION COMPARISON AT IODP SITE U1485. A, D, SSTSN records based on the


three different calibrations of Anand et al.91, Gray and Evans93 and Tierney et al.92 (BAYMAG) for the LGM-HL and MIS 6-5 intervals; B, E, same plotted as SST anomalies; C, F, calculated


mean annual SST anomalies. EXTENDED DATA FIG. 5 SAT METHOD INSENSITIVITY TO INSOLATION WINDOW LENGTH. Application of the SAT method to Mg/Ca SSTSN from Site U1485 (A–D) and October SSTs from


the CCSM3 accelerated model simulation (E–H)7. MASST is estimated by regressing seasonal SSTs with insolation averaged over a range of window lengths, from 30 to 270 days, with the same


central 30-day interval. Widening the window length changes the slope of the regression between insolation and seasonal SST (D, H) but has a negligible impact on the SAT calculated MASST


anomalies. Shaded region in B reflects the 2 s.e. uncertainty. EXTENDED DATA FIG. 6 LOCATIONS AND TEMPORAL AVAILABILITY OF PROXY RECORDS. A, Map of SST records used in this study showing


proxy type and whether the site has a LIG section. See Extended Data Table 1 for a list of records and their citations. B, C, Temporal availability of records over the Holocene and LIG


intervals, respectively. Figure constructed using MATLAB and code from Emile-Geay et al.105. EXTENDED DATA FIG. 7 MAP OF PROXY SEASONAL BIAS. Map of SST records used in this study showing


the month of best fit between LIG SSTSN and insolation closest to the 30-day window identified using the SAT method. See Extended Data Table 1 for a list of records included. Figure


constructed using MATLAB and code from Emile-Geay et al.105. EXTENDED DATA FIG. 8 APPLICATION OF SAT METHOD TO MODEL SEASONAL SSTS FROM CORE LOCATIONS IN THE EASTERN EQUATORIAL PACIFIC


(EEP), SOUTHERN HEMISPHERE EXTRATROPICS, NORTHERN HEMISPHERE EXTRATROPICS, AND TROPICAL ATLANTIC. A–D, Proxy SSTSN anomalies plotted with SSTSN output from the nearest grid cell in the CCSM3


accelerated model simulation. E–H, SAT method MASST (blue) calculated from model SSTSN data shown in A–D plotted with the actual model MASST data (black) for each location. All SST


anomalies in this figure are calculated relative to values averaged between 115 ka and 116 ka. SUPPLEMENTARY INFORMATION SUPPLEMENTARY METHODS This file contains theoretical derivation of


the SAT method and its properties. SOURCE DATA SOURCE DATA FIG. 1 SOURCE DATA FIG. 2 SOURCE DATA FIG. 3 SOURCE DATA FIG. 4 RIGHTS AND PERMISSIONS Springer Nature or its licensor holds


exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely


governed by the terms of such publishing agreement and applicable law. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Bova, S., Rosenthal, Y., Liu, Z. _et al._ Seasonal origin


of the thermal maxima at the Holocene and the last interglacial. _Nature_ 589, 548–553 (2021). https://doi.org/10.1038/s41586-020-03155-x Download citation * Received: 18 July 2020 *


Accepted: 03 December 2020 * Published: 27 January 2021 * Issue Date: 28 January 2021 * DOI: https://doi.org/10.1038/s41586-020-03155-x SHARE THIS ARTICLE Anyone you share the following link


with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative