Ciliary entry of the kinesin-2 motor kif17 is regulated by importin-β2 and rangtp

Ciliary entry of the kinesin-2 motor kif17 is regulated by importin-β2 and rangtp


Nature is ON AIR - VIEW NOW

Please note: this is Beta feature.


Play all audios:

Loading...

ABSTRACT The biogenesis, maintenance and function of primary cilia are controlled through intraflagellar transport (IFT) driven by two kinesin-2 family members, the heterotrimeric


KIF3A/KIF3B/KAP complex and the homodimeric KIF17 motor1,2. How these motors and their cargoes gain access to the ciliary compartment is poorly understood. Here, we identify a ciliary


localization signal (CLS) in the KIF17 tail domain that is necessary and sufficient for ciliary targeting. Similarities between the CLS and classic nuclear localization signals (NLSs)


suggest that similar mechanisms regulate nuclear and ciliary import. We hypothesize that ciliary targeting of KIF17 is regulated by a ciliary-cytoplasmic gradient of the small GTPase Ran,


with high levels of GTP-bound Ran (RanGTP) in the cilium. Consistent with this, cytoplasmic expression of GTP-locked Ran(G19V) disrupts the gradient and abolishes ciliary entry of KIF17.


Furthermore, KIF17 interacts with the nuclear import protein importin-β2 in a manner dependent on the CLS and inhibited by RanGTP. We propose that Ran has a global role in regulating


cellular compartmentalization by controlling the shuttling of cytoplasmic proteins into nuclear and ciliary compartments. Access through your institution Buy or subscribe This is a preview


of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only


$17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS THE INTRAFLAGELLAR TRANSPORT


CYCLE Article 13 November 2024 REGULATION OF CILIARY HOMEOSTASIS BY INTRAFLAGELLAR TRANSPORT-INDEPENDENT KINESINS Article Open access 13 January 2024 TRAK ADAPTORS REGULATE THE RECRUITMENT


AND ACTIVATION OF DYNEIN AND KINESIN IN MITOCHONDRIAL TRANSPORT Article Open access 13 March 2023 REFERENCES * Silverman, M. A. & Leroux, M. R. Intraflagellar transport and the


generation of dynamic, structurally and functionally diverse cilia. _Trends Cell Biol._ 19, 306–316 (2009). Article  CAS  Google Scholar  * Scholey, J. M. Intraflagellar transport motors in


cilia: moving along the cell's antenna. _J. Cell Biol._ 180, 23–29 (2008). Article  CAS  Google Scholar  * Satir, P., Mitchell, D. R. & Jekely, G. How did the cilium evolve? _Curr.


Top. Dev. Biol._ 85, 63–82 (2008). Article  CAS  Google Scholar  * Gerdes, J. M., Davis, E. E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease.


_Cell_ 137, 32–45 (2009). Article  CAS  Google Scholar  * Satir, P. & Christensen, S. T. Overview of structure and function of mammalian cilia. _Annu. Rev. Physiol._ 69, 377–400 (2007).


Article  CAS  Google Scholar  * Scholey, J. M. & Anderson, K. V. Intraflagellar transport and cilium-based signaling. _Cell_ 125, 439–442 (2006). Article  CAS  Google Scholar  * Tobin,


J. L. & Beales, P. L. The nonmotile ciliopathies. _Genet. Med._ 11, 386–402 (2009). Article  CAS  Google Scholar  * Fliegauf, M., Benzing, T. & Omran, H. Mechanisms of disease - when


cilia go bad: cilia defects and ciliopathies. _Nat. Rev. Mol. Cell Biol._ 8, 880–893 (2007). Article  CAS  Google Scholar  * Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport.


_Nat. Rev. Mol. Cell Biol._ 3, 813–825 (2002). Article  CAS  Google Scholar  * Ou, G. S., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. Functional coordination of


intraflagellar transport motors. _Nature_ 436, 583–587 (2005). Article  CAS  Google Scholar  * Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory


cilia on _C. elegans_ neurons. _Nat. Cell Biol._ 6, 1109–1123 (2004). Article  CAS  Google Scholar  * Insinna, C., Pathak, N., Perkins, B., Drummond, I. & Besharse, J. C. The homodimeric


kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. _Dev. Biol._ 316, 160–170 (2008). Article  CAS  Google Scholar  * Jenkins, P. M. et al. Ciliary


targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. _Curr. Biol._ 16, 1211–1216 (2006). Article  CAS  Google Scholar  * Insinna, C.,


Humby, M., Sedmak, T., Wolfrum, U. & Besharse, J. C. Different roles for KIF17 and kinesin II in photoreceptor development and maintenance. _Dev. Dynam._ 238, 2211–2222 (2009). Article 


CAS  Google Scholar  * Gherman, A., Davis, E. E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. _Nat.


Genet._ 38, 961–962 (2006). Article  CAS  Google Scholar  * Gilula, N. B. & Satir, P. The ciliary necklace. A ciliary membrane specialization. _J. Cell Biol._ 53, 494–509 (1972). Article


  CAS  Google Scholar  * Luby-Phelps, K., Fogerty, J., Baker, S. A., Pazour, G. J. & Besharse, J. C. Spatial distribution of intraflagellar transport proteins in vertebrate


photoreceptors. _Vision Res._ 48, 413–423 (2008). Article  CAS  Google Scholar  * Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of


intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. _Curr. Biol._ 11, 1586–1590 (2001). Article  CAS  Google Scholar  *


Murrell, J. R. & Hunter, D. D. An olfactory sensory neuron line, Odora, properly targets olfactory proteins and responds to odorants. _J. Neurosci._ 19, 8260–8270 (1999). Article  CAS 


Google Scholar  * Jekely, G. & Arendt, D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. _Bioessays_ 28, 191–198 (2006).


Article  CAS  Google Scholar  * Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. _PLOS biol._ 2, 2085–2093 (2004). Article 


CAS  Google Scholar  * Christensen, S. T., Pedersen, L. B., Schneider, L. & Satir, P. Sensory cilia and integration of signal transduction in human health and disease. _Traffic_ 8,


97–109 (2007). Article  CAS  Google Scholar  * Lee, B. J. et al. Rules for nuclear localization sequence recognition by karyopherin beta 2. _Cell_ 126, 543–558 (2006). Article  CAS  Google


Scholar  * Stewart, M. Molecular mechanism of the nuclear protein import cycle. _Nat. Rev. Mol. Cell Biol._ 8, 195–208 (2007). Article  CAS  Google Scholar  * Liu, Q. et al. The proteome of


the mouse photoreceptor sensory cilium complex. _Mol. Cell. Proteomics_ 6, 1299–1317 (2007). Article  CAS  Google Scholar  * Richards, S. A., Lounsbury, K. M. & Macara, I. G. The C


terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, Ran-GAP, and HTF9A/RanBP1. _J. Biol. Chem._ 270, 14405–14411 (1995). Article  CAS 


Google Scholar  * Lounsbury, K. M., Richards, S. A., Carey, K. L. & Macara, I. G. Mutations within the Ran/TC4 GTPase - Effects on regulatory factor interactions and subcellular


localization. _J. Biol. Chem._ 271, 32834–32841 (1996). Article  CAS  Google Scholar  * Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G.L. & Wandless, T. J. A rapid,


reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. _Cell_ 126, 995–1004 (2006). Article  CAS  Google Scholar  * Maynard-Smith, L.


A., Chen, L. C., Banaszynski, L. A., Ooi, A. G.L. & Wandless, T. J. A directed approach for engineering conditional protein stability using biologically silent small molecules. _J. Biol.


Chem._ 282, 24866–24872 (2007). Article  CAS  Google Scholar  * Schoeber, J. P. H. et al. Conditional fast expression and function of multimeric TRPV5 channels using Shield-1. _Am. J.


Physiol. Renal Physiol._ 296, F204–F211 (2009). Article  CAS  Google Scholar  * Weis, K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. _Cell_ 112,


441–451 (2003). Article  CAS  Google Scholar  * Fan, S. L. et al. A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. _J. Cell Biol._ 178,


387–398 (2007). Article  CAS  Google Scholar  * Ems-McClung, S. C., Zheng, Y. X. & Walczak, C. E. Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite


nuclear localization signal. _Mol. Biol. Cell_ 15, 46–57 (2004). Article  CAS  Google Scholar  * Tahara, K. et al. Importin-beta and the small guanosine triphosphatase Ran mediate chromosome


loading of the human chromokinesin Kid. _J. Cell. Biol._ 180, 493–506 (2008). Article  CAS  Google Scholar  * Mazelova, J. et al. Ciliary targeting motif VxPx directs assembly of a


trafficking module through Arf4. _EMBO J._ 28, 183–192 (2009). Article  CAS  Google Scholar  * Geng, L. et al. Polycystin-2 traffics to cilia independently of polycystin-1 by using an


N-terminal RVxP motif. _J. Cell. Sci._ 119, 1383–1395 (2006). Article  CAS  Google Scholar  * Pazour, G. J. & Bloodgood, R. A. Targeting proteins to the ciliary membrane. _Curr. Top.


Dev. Biol._ 85, 115–149 (2008). Article  CAS  Google Scholar  * Hunnicutt, G. R., Kosfiszer, M. G. & Snell, W. J. Cell body and flagellar agglutinins in _Chlamydomonas reinhardtii_ - the


cell body plasma-membrane is a reservoir for agglutinins whose migration to the flagella is regulated by a functional barrier. _J. Cell. Biol._ 111, 1605–1616 (1990). Article  CAS  Google


Scholar  * Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. _Mol. Biol. Cell_ 10, 47–61 (1999). Article 


CAS  Google Scholar  * Morris, R. L. et al. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos. _Dev. Biol._


274, 56–69 (2004). Article  CAS  Google Scholar  * Cai, D. W., Hoppe, A. D., Swanson, J. A. & Verhey, K. J. Kinesin-1 structural organization and conformational changes revealed by FRET


stoichiometry in live cells. _J. Cell. Biol._ 176, 51–63 (2007). Article  CAS  Google Scholar  * Mayer, U. et al. Proteomic analysis of a membrane preparation from rat olfactory sensory


cilia. _Chem. Senses_ 33, 145–162 (2008). Article  CAS  Google Scholar  * Mayer, U. et al. The proteome of rat olfactory sensory cilia. _Proteomics_ 9, 322–334 (2009). Article  CAS  Google


Scholar  * Davies, S. & Forge, A. Preparation of the mammalian organ of Corti for scanning electron-microscopy. _J. Microsc-Oxford_ 147, 89–101 (1987). Article  CAS  Google Scholar 


Download references ACKNOWLEDGEMENTS This work was supported by NIH grants R01GM070862 and R01GM083254 (to K.J.V.), R01DC009606 (to J.R.M.), R01DK084725 (to B.M.), and T32GM007767 and


T32DC00011 (to P.M.J.). Work was also supported by NRSAs F32GM089034 (to J.F.D.) and F31DC009524 (to P.M.J.). H.L.K. is supported as a Barbour Fellow at the University of Michigan. pGEX-Ran


plasmids were a kind gift from Brian Burke (University of Florida) and rabbit anti-RanGTP antibody was a kind gift from Ian Macara (University of Virginia). AUTHOR INFORMATION AUTHORS AND


AFFILIATIONS * Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, 48109, Michigan, USA John F. Dishinger, Hooi Lynn Kee, Jennetta W. Hammond 


& Kristen J. Verhey * Department of Pharmacology, University of Michigan Medical School, Ann Arbor, 48109, Michigan, USA Paul M. Jenkins, Yen Nhu-Thi Truong & Jeffrey R. Martens *


Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, 48109, Michigan, USA Shuling Fan & Ben Margolis * Department of Biological Chemistry, University of


Michigan Medical School, Ann Arbor, 48109, Michigan, USA Ben Margolis * Department of Paediatrics and Communicable Disease, Division of Paediatric Nephrology, University of Michigan Medical


School, Ann Arbor, 48109, Michigan, USA Toby W. Hurd Authors * John F. Dishinger View author publications You can also search for this author inPubMed Google Scholar * Hooi Lynn Kee View


author publications You can also search for this author inPubMed Google Scholar * Paul M. Jenkins View author publications You can also search for this author inPubMed Google Scholar *


Shuling Fan View author publications You can also search for this author inPubMed Google Scholar * Toby W. Hurd View author publications You can also search for this author inPubMed Google


Scholar * Jennetta W. Hammond View author publications You can also search for this author inPubMed Google Scholar * Yen Nhu-Thi Truong View author publications You can also search for this


author inPubMed Google Scholar * Ben Margolis View author publications You can also search for this author inPubMed Google Scholar * Jeffrey R. Martens View author publications You can also


search for this author inPubMed Google Scholar * Kristen J. Verhey View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS J.F.D., H.L.K, P.M.J.,


S.F. and Y.N.T. performed experiments. J.F.D., H.L.K., P.M.J., J.R.M. and K.J.V. designed experiments. All authors contributed to helpful discussions shaping the aims of the project. J.F.D


and K.J.V. wrote the manuscript, with all authors providing detailed comments and suggestions. K.J.V. directed the project. CORRESPONDING AUTHOR Correspondence to Kristen J. Verhey. ETHICS


DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information (PDF 1255 kb) RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Dishinger, J., Kee, H., Jenkins, P. _et al._ Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2


and RanGTP. _Nat Cell Biol_ 12, 703–710 (2010). https://doi.org/10.1038/ncb2073 Download citation * Received: 16 March 2010 * Accepted: 04 May 2010 * Published: 06 June 2010 * Issue Date:


July 2010 * DOI: https://doi.org/10.1038/ncb2073 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is


not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative